Metamath Proof Explorer


Theorem ee102

Description: e102 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee102.1 ( 𝜑𝜓 )
ee102.2 𝜒
ee102.3 ( 𝜑 → ( 𝜃𝜏 ) )
ee102.4 ( 𝜓 → ( 𝜒 → ( 𝜏𝜂 ) ) )
Assertion ee102 ( 𝜑 → ( 𝜃𝜂 ) )

Proof

Step Hyp Ref Expression
1 ee102.1 ( 𝜑𝜓 )
2 ee102.2 𝜒
3 ee102.3 ( 𝜑 → ( 𝜃𝜏 ) )
4 ee102.4 ( 𝜓 → ( 𝜒 → ( 𝜏𝜂 ) ) )
5 1 a1d ( 𝜑 → ( 𝜃𝜓 ) )
6 2 a1i ( 𝜃𝜒 )
7 6 a1i ( 𝜑 → ( 𝜃𝜒 ) )
8 5 7 3 4 ee222 ( 𝜑 → ( 𝜃𝜂 ) )