Metamath Proof Explorer


Theorem ee110

Description: e110 without virtual deductions. (Contributed by Alan Sare, 22-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee110.1 ( 𝜑𝜓 )
ee110.2 ( 𝜑𝜒 )
ee110.3 𝜃
ee110.4 ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) )
Assertion ee110 ( 𝜑𝜏 )

Proof

Step Hyp Ref Expression
1 ee110.1 ( 𝜑𝜓 )
2 ee110.2 ( 𝜑𝜒 )
3 ee110.3 𝜃
4 ee110.4 ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) )
5 3 a1i ( 𝜑𝜃 )
6 1 2 5 4 syl3c ( 𝜑𝜏 )