Metamath Proof Explorer


Theorem ee123

Description: e123 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee123.1 ( 𝜑𝜓 )
ee123.2 ( 𝜑 → ( 𝜒𝜃 ) )
ee123.3 ( 𝜑 → ( 𝜒 → ( 𝜏𝜂 ) ) )
ee123.4 ( 𝜓 → ( 𝜃 → ( 𝜂𝜁 ) ) )
Assertion ee123 ( 𝜑 → ( 𝜒 → ( 𝜏𝜁 ) ) )

Proof

Step Hyp Ref Expression
1 ee123.1 ( 𝜑𝜓 )
2 ee123.2 ( 𝜑 → ( 𝜒𝜃 ) )
3 ee123.3 ( 𝜑 → ( 𝜒 → ( 𝜏𝜂 ) ) )
4 ee123.4 ( 𝜓 → ( 𝜃 → ( 𝜂𝜁 ) ) )
5 1 a1d ( 𝜑 → ( 𝜏𝜓 ) )
6 5 a1d ( 𝜑 → ( 𝜒 → ( 𝜏𝜓 ) ) )
7 2 a1dd ( 𝜑 → ( 𝜒 → ( 𝜏𝜃 ) ) )
8 6 7 3 4 ee333 ( 𝜑 → ( 𝜒 → ( 𝜏𝜁 ) ) )