Metamath Proof Explorer
		
		
		
		Description:  e13an without virtual deductions.  (Contributed by Alan Sare, 8-Jul-2011)  (Proof modification is discouraged.)
       (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ee13an.1 | ⊢ ( 𝜑  →  𝜓 ) | 
					
						|  |  | ee13an.2 | ⊢ ( 𝜑  →  ( 𝜒  →  ( 𝜃  →  𝜏 ) ) ) | 
					
						|  |  | ee13an.3 | ⊢ ( ( 𝜓  ∧  𝜏 )  →  𝜂 ) | 
				
					|  | Assertion | ee13an | ⊢  ( 𝜑  →  ( 𝜒  →  ( 𝜃  →  𝜂 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ee13an.1 | ⊢ ( 𝜑  →  𝜓 ) | 
						
							| 2 |  | ee13an.2 | ⊢ ( 𝜑  →  ( 𝜒  →  ( 𝜃  →  𝜏 ) ) ) | 
						
							| 3 |  | ee13an.3 | ⊢ ( ( 𝜓  ∧  𝜏 )  →  𝜂 ) | 
						
							| 4 | 3 | ex | ⊢ ( 𝜓  →  ( 𝜏  →  𝜂 ) ) | 
						
							| 5 | 1 2 4 | ee13 | ⊢ ( 𝜑  →  ( 𝜒  →  ( 𝜃  →  𝜂 ) ) ) |