Metamath Proof Explorer


Theorem ee210

Description: e210 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee210.1 ( 𝜑 → ( 𝜓𝜒 ) )
ee210.2 ( 𝜑𝜃 )
ee210.3 𝜏
ee210.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
Assertion ee210 ( 𝜑 → ( 𝜓𝜂 ) )

Proof

Step Hyp Ref Expression
1 ee210.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 ee210.2 ( 𝜑𝜃 )
3 ee210.3 𝜏
4 ee210.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
5 2 a1d ( 𝜑 → ( 𝜓𝜃 ) )
6 3 a1i ( 𝜓𝜏 )
7 6 a1i ( 𝜑 → ( 𝜓𝜏 ) )
8 1 5 7 4 ee222 ( 𝜑 → ( 𝜓𝜂 ) )