Metamath Proof Explorer


Theorem ee21an

Description: e21an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee21an.1 ( 𝜑 → ( 𝜓𝜒 ) )
ee21an.2 ( 𝜑𝜃 )
ee21an.3 ( ( 𝜒𝜃 ) → 𝜏 )
Assertion ee21an ( 𝜑 → ( 𝜓𝜏 ) )

Proof

Step Hyp Ref Expression
1 ee21an.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 ee21an.2 ( 𝜑𝜃 )
3 ee21an.3 ( ( 𝜒𝜃 ) → 𝜏 )
4 3 ex ( 𝜒 → ( 𝜃𝜏 ) )
5 1 2 4 syl6ci ( 𝜑 → ( 𝜓𝜏 ) )