Metamath Proof Explorer


Theorem ee222

Description: e222 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 7-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee222.1 ( 𝜑 → ( 𝜓𝜒 ) )
ee222.2 ( 𝜑 → ( 𝜓𝜃 ) )
ee222.3 ( 𝜑 → ( 𝜓𝜏 ) )
ee222.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
Assertion ee222 ( 𝜑 → ( 𝜓𝜂 ) )

Proof

Step Hyp Ref Expression
1 ee222.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 ee222.2 ( 𝜑 → ( 𝜓𝜃 ) )
3 ee222.3 ( 𝜑 → ( 𝜓𝜏 ) )
4 ee222.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
5 1 imp ( ( 𝜑𝜓 ) → 𝜒 )
6 2 imp ( ( 𝜑𝜓 ) → 𝜃 )
7 3 imp ( ( 𝜑𝜓 ) → 𝜏 )
8 5 6 7 4 syl3c ( ( 𝜑𝜓 ) → 𝜂 )
9 8 ex ( 𝜑 → ( 𝜓𝜂 ) )