Step |
Hyp |
Ref |
Expression |
1 |
|
ee223.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
2 |
|
ee223.2 |
⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) |
3 |
|
ee223.3 |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → 𝜂 ) ) ) |
4 |
|
ee223.4 |
⊢ ( 𝜒 → ( 𝜃 → ( 𝜂 → 𝜁 ) ) ) |
5 |
1 4
|
syl6 |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜃 → ( 𝜂 → 𝜁 ) ) ) ) |
6 |
5
|
com34 |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜂 → ( 𝜃 → 𝜁 ) ) ) ) |
7 |
6
|
com23 |
⊢ ( 𝜑 → ( 𝜂 → ( 𝜓 → ( 𝜃 → 𝜁 ) ) ) ) |
8 |
7
|
com12 |
⊢ ( 𝜂 → ( 𝜑 → ( 𝜓 → ( 𝜃 → 𝜁 ) ) ) ) |
9 |
3 8
|
syl8 |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → ( 𝜑 → ( 𝜓 → ( 𝜃 → 𝜁 ) ) ) ) ) ) |
10 |
9
|
com34 |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜑 → ( 𝜏 → ( 𝜓 → ( 𝜃 → 𝜁 ) ) ) ) ) ) |
11 |
10
|
pm2.43a |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → ( 𝜓 → ( 𝜃 → 𝜁 ) ) ) ) ) |
12 |
11
|
com34 |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜓 → ( 𝜏 → ( 𝜃 → 𝜁 ) ) ) ) ) |
13 |
12
|
pm2.43d |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → ( 𝜃 → 𝜁 ) ) ) ) |
14 |
13
|
com34 |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜃 → ( 𝜏 → 𝜁 ) ) ) ) |
15 |
2 14
|
mpdd |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → 𝜁 ) ) ) |