Metamath Proof Explorer


Theorem ee223

Description: e223 without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee223.1 ( 𝜑 → ( 𝜓𝜒 ) )
ee223.2 ( 𝜑 → ( 𝜓𝜃 ) )
ee223.3 ( 𝜑 → ( 𝜓 → ( 𝜏𝜂 ) ) )
ee223.4 ( 𝜒 → ( 𝜃 → ( 𝜂𝜁 ) ) )
Assertion ee223 ( 𝜑 → ( 𝜓 → ( 𝜏𝜁 ) ) )

Proof

Step Hyp Ref Expression
1 ee223.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 ee223.2 ( 𝜑 → ( 𝜓𝜃 ) )
3 ee223.3 ( 𝜑 → ( 𝜓 → ( 𝜏𝜂 ) ) )
4 ee223.4 ( 𝜒 → ( 𝜃 → ( 𝜂𝜁 ) ) )
5 1 4 syl6 ( 𝜑 → ( 𝜓 → ( 𝜃 → ( 𝜂𝜁 ) ) ) )
6 5 com34 ( 𝜑 → ( 𝜓 → ( 𝜂 → ( 𝜃𝜁 ) ) ) )
7 6 com23 ( 𝜑 → ( 𝜂 → ( 𝜓 → ( 𝜃𝜁 ) ) ) )
8 7 com12 ( 𝜂 → ( 𝜑 → ( 𝜓 → ( 𝜃𝜁 ) ) ) )
9 3 8 syl8 ( 𝜑 → ( 𝜓 → ( 𝜏 → ( 𝜑 → ( 𝜓 → ( 𝜃𝜁 ) ) ) ) ) )
10 9 com34 ( 𝜑 → ( 𝜓 → ( 𝜑 → ( 𝜏 → ( 𝜓 → ( 𝜃𝜁 ) ) ) ) ) )
11 10 pm2.43a ( 𝜑 → ( 𝜓 → ( 𝜏 → ( 𝜓 → ( 𝜃𝜁 ) ) ) ) )
12 11 com34 ( 𝜑 → ( 𝜓 → ( 𝜓 → ( 𝜏 → ( 𝜃𝜁 ) ) ) ) )
13 12 pm2.43d ( 𝜑 → ( 𝜓 → ( 𝜏 → ( 𝜃𝜁 ) ) ) )
14 13 com34 ( 𝜑 → ( 𝜓 → ( 𝜃 → ( 𝜏𝜁 ) ) ) )
15 2 14 mpdd ( 𝜑 → ( 𝜓 → ( 𝜏𝜁 ) ) )