Metamath Proof Explorer


Theorem ee30an

Description: Conjunction form of ee30 . (Contributed by Alan Sare, 17-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee30an.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
ee30an.2 𝜏
ee30an.3 ( ( 𝜃𝜏 ) → 𝜂 )
Assertion ee30an ( 𝜑 → ( 𝜓 → ( 𝜒𝜂 ) ) )

Proof

Step Hyp Ref Expression
1 ee30an.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
2 ee30an.2 𝜏
3 ee30an.3 ( ( 𝜃𝜏 ) → 𝜂 )
4 3 ex ( 𝜃 → ( 𝜏𝜂 ) )
5 1 2 4 ee30 ( 𝜑 → ( 𝜓 → ( 𝜒𝜂 ) ) )