Metamath Proof Explorer


Theorem ee31an

Description: e31an without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee31an.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
ee31an.2 ( 𝜑𝜏 )
ee31an.3 ( ( 𝜃𝜏 ) → 𝜂 )
Assertion ee31an ( 𝜑 → ( 𝜓 → ( 𝜒𝜂 ) ) )

Proof

Step Hyp Ref Expression
1 ee31an.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
2 ee31an.2 ( 𝜑𝜏 )
3 ee31an.3 ( ( 𝜃𝜏 ) → 𝜂 )
4 2 a1d ( 𝜑 → ( 𝜒𝜏 ) )
5 4 a1d ( 𝜑 → ( 𝜓 → ( 𝜒𝜏 ) ) )
6 1 5 3 ee33an ( 𝜑 → ( 𝜓 → ( 𝜒𝜂 ) ) )