Metamath Proof Explorer


Theorem ee32

Description: e32 without virtual deductions. (Contributed by Alan Sare, 18-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee32.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
ee32.2 ( 𝜑 → ( 𝜓𝜏 ) )
ee32.3 ( 𝜃 → ( 𝜏𝜂 ) )
Assertion ee32 ( 𝜑 → ( 𝜓 → ( 𝜒𝜂 ) ) )

Proof

Step Hyp Ref Expression
1 ee32.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
2 ee32.2 ( 𝜑 → ( 𝜓𝜏 ) )
3 ee32.3 ( 𝜃 → ( 𝜏𝜂 ) )
4 2 a1dd ( 𝜑 → ( 𝜓 → ( 𝜒𝜏 ) ) )
5 1 4 3 ee33 ( 𝜑 → ( 𝜓 → ( 𝜒𝜂 ) ) )