Metamath Proof Explorer


Theorem ee323

Description: e323 without virtual deductions. (Contributed by Alan Sare, 17-Apr-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee323.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
ee323.2 ( 𝜑 → ( 𝜓𝜏 ) )
ee323.3 ( 𝜑 → ( 𝜓 → ( 𝜒𝜂 ) ) )
ee323.4 ( 𝜃 → ( 𝜏 → ( 𝜂𝜁 ) ) )
Assertion ee323 ( 𝜑 → ( 𝜓 → ( 𝜒𝜁 ) ) )

Proof

Step Hyp Ref Expression
1 ee323.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
2 ee323.2 ( 𝜑 → ( 𝜓𝜏 ) )
3 ee323.3 ( 𝜑 → ( 𝜓 → ( 𝜒𝜂 ) ) )
4 ee323.4 ( 𝜃 → ( 𝜏 → ( 𝜂𝜁 ) ) )
5 2 a1dd ( 𝜑 → ( 𝜓 → ( 𝜒𝜏 ) ) )
6 1 5 3 4 ee333 ( 𝜑 → ( 𝜓 → ( 𝜒𝜁 ) ) )