Metamath Proof Explorer


Theorem ee32an

Description: e33an without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee32an.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
ee32an.2 ( 𝜑 → ( 𝜓𝜏 ) )
ee32an.3 ( ( 𝜃𝜏 ) → 𝜂 )
Assertion ee32an ( 𝜑 → ( 𝜓 → ( 𝜒𝜂 ) ) )

Proof

Step Hyp Ref Expression
1 ee32an.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
2 ee32an.2 ( 𝜑 → ( 𝜓𝜏 ) )
3 ee32an.3 ( ( 𝜃𝜏 ) → 𝜂 )
4 2 a1dd ( 𝜑 → ( 𝜓 → ( 𝜒𝜏 ) ) )
5 1 4 3 ee33an ( 𝜑 → ( 𝜓 → ( 𝜒𝜂 ) ) )