Metamath Proof Explorer


Theorem ee33an

Description: e33an without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee33an.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
ee33an.2 ( 𝜑 → ( 𝜓 → ( 𝜒𝜏 ) ) )
ee33an.3 ( ( 𝜃𝜏 ) → 𝜂 )
Assertion ee33an ( 𝜑 → ( 𝜓 → ( 𝜒𝜂 ) ) )

Proof

Step Hyp Ref Expression
1 ee33an.1 ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) )
2 ee33an.2 ( 𝜑 → ( 𝜓 → ( 𝜒𝜏 ) ) )
3 ee33an.3 ( ( 𝜃𝜏 ) → 𝜂 )
4 3 ex ( 𝜃 → ( 𝜏𝜂 ) )
5 1 2 4 ee33 ( 𝜑 → ( 𝜓 → ( 𝜒𝜂 ) ) )