Metamath Proof Explorer


Theorem ee4anv

Description: Distribute two pairs of existential quantifiers over a conjunction. For a version requiring fewer axioms but with additional disjoint variable conditions, see 4exdistrv . (Contributed by NM, 31-Jul-1995) Remove disjoint variable conditions on y , z and x , w . (Revised by Eric Schmidt, 26-Oct-2025)

Ref Expression
Assertion ee4anv ( ∃ 𝑥𝑦𝑧𝑤 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃ 𝑧𝑤 𝜓 ) )

Proof

Step Hyp Ref Expression
1 excom ( ∃ 𝑦𝑧𝑤 ( 𝜑𝜓 ) ↔ ∃ 𝑧𝑦𝑤 ( 𝜑𝜓 ) )
2 1 exbii ( ∃ 𝑥𝑦𝑧𝑤 ( 𝜑𝜓 ) ↔ ∃ 𝑥𝑧𝑦𝑤 ( 𝜑𝜓 ) )
3 eeanv ( ∃ 𝑦𝑤 ( 𝜑𝜓 ) ↔ ( ∃ 𝑦 𝜑 ∧ ∃ 𝑤 𝜓 ) )
4 3 2exbii ( ∃ 𝑥𝑧𝑦𝑤 ( 𝜑𝜓 ) ↔ ∃ 𝑥𝑧 ( ∃ 𝑦 𝜑 ∧ ∃ 𝑤 𝜓 ) )
5 nfv 𝑧 𝜑
6 5 nfex 𝑧𝑦 𝜑
7 nfv 𝑥 𝜓
8 7 nfex 𝑥𝑤 𝜓
9 6 8 eean ( ∃ 𝑥𝑧 ( ∃ 𝑦 𝜑 ∧ ∃ 𝑤 𝜓 ) ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃ 𝑧𝑤 𝜓 ) )
10 2 4 9 3bitri ( ∃ 𝑥𝑦𝑧𝑤 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝑦 𝜑 ∧ ∃ 𝑧𝑤 𝜓 ) )