Description: Obsolete version of ee4anv as of 26-Oct-2025. (Contributed by NM, 31-Jul-1995) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ee4anvOLD | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 𝜓 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | excom | ⊢ ( ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑧 ∃ 𝑦 ∃ 𝑤 ( 𝜑 ∧ 𝜓 ) ) | |
| 2 | 1 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ∃ 𝑧 ∃ 𝑦 ∃ 𝑤 ( 𝜑 ∧ 𝜓 ) ) | 
| 3 | eeanv | ⊢ ( ∃ 𝑦 ∃ 𝑤 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑦 𝜑 ∧ ∃ 𝑤 𝜓 ) ) | |
| 4 | 3 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑧 ∃ 𝑦 ∃ 𝑤 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ∃ 𝑧 ( ∃ 𝑦 𝜑 ∧ ∃ 𝑤 𝜓 ) ) | 
| 5 | eeanv | ⊢ ( ∃ 𝑥 ∃ 𝑧 ( ∃ 𝑦 𝜑 ∧ ∃ 𝑤 𝜓 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 𝜓 ) ) | |
| 6 | 2 4 5 | 3bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 𝜓 ) ) |