Metamath Proof Explorer


Theorem eean

Description: Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010) (Revised by Mario Carneiro, 6-Oct-2016)

Ref Expression
Hypotheses eean.1 𝑦 𝜑
eean.2 𝑥 𝜓
Assertion eean ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 eean.1 𝑦 𝜑
2 eean.2 𝑥 𝜓
3 1 19.42 ( ∃ 𝑦 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∃ 𝑦 𝜓 ) )
4 3 exbii ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) )
5 2 nfex 𝑥𝑦 𝜓
6 5 19.41 ( ∃ 𝑥 ( 𝜑 ∧ ∃ 𝑦 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ) )
7 4 6 bitri ( ∃ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ) )