| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eeanv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑  ∧  𝜓 )  ↔  ( ∃ 𝑥 𝜑  ∧  ∃ 𝑦 𝜓 ) ) | 
						
							| 2 | 1 | anbi1i | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝜑  ∧  𝜓 )  ∧  ∃ 𝑧 𝜒 )  ↔  ( ( ∃ 𝑥 𝜑  ∧  ∃ 𝑦 𝜓 )  ∧  ∃ 𝑧 𝜒 ) ) | 
						
							| 3 |  | df-3an | ⊢ ( ( 𝜑  ∧  𝜓  ∧  𝜒 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∧  𝜒 ) ) | 
						
							| 4 | 3 | exbii | ⊢ ( ∃ 𝑧 ( 𝜑  ∧  𝜓  ∧  𝜒 )  ↔  ∃ 𝑧 ( ( 𝜑  ∧  𝜓 )  ∧  𝜒 ) ) | 
						
							| 5 |  | 19.42v | ⊢ ( ∃ 𝑧 ( ( 𝜑  ∧  𝜓 )  ∧  𝜒 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∧  ∃ 𝑧 𝜒 ) ) | 
						
							| 6 | 4 5 | bitri | ⊢ ( ∃ 𝑧 ( 𝜑  ∧  𝜓  ∧  𝜒 )  ↔  ( ( 𝜑  ∧  𝜓 )  ∧  ∃ 𝑧 𝜒 ) ) | 
						
							| 7 | 6 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑  ∧  𝜓  ∧  𝜒 )  ↔  ∃ 𝑥 ∃ 𝑦 ( ( 𝜑  ∧  𝜓 )  ∧  ∃ 𝑧 𝜒 ) ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑦 𝜒 | 
						
							| 9 | 8 | nfex | ⊢ Ⅎ 𝑦 ∃ 𝑧 𝜒 | 
						
							| 10 | 9 | 19.41 | ⊢ ( ∃ 𝑦 ( ( 𝜑  ∧  𝜓 )  ∧  ∃ 𝑧 𝜒 )  ↔  ( ∃ 𝑦 ( 𝜑  ∧  𝜓 )  ∧  ∃ 𝑧 𝜒 ) ) | 
						
							| 11 | 10 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝜑  ∧  𝜓 )  ∧  ∃ 𝑧 𝜒 )  ↔  ∃ 𝑥 ( ∃ 𝑦 ( 𝜑  ∧  𝜓 )  ∧  ∃ 𝑧 𝜒 ) ) | 
						
							| 12 |  | nfv | ⊢ Ⅎ 𝑥 𝜒 | 
						
							| 13 | 12 | nfex | ⊢ Ⅎ 𝑥 ∃ 𝑧 𝜒 | 
						
							| 14 | 13 | 19.41 | ⊢ ( ∃ 𝑥 ( ∃ 𝑦 ( 𝜑  ∧  𝜓 )  ∧  ∃ 𝑧 𝜒 )  ↔  ( ∃ 𝑥 ∃ 𝑦 ( 𝜑  ∧  𝜓 )  ∧  ∃ 𝑧 𝜒 ) ) | 
						
							| 15 | 7 11 14 | 3bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑  ∧  𝜓  ∧  𝜒 )  ↔  ( ∃ 𝑥 ∃ 𝑦 ( 𝜑  ∧  𝜓 )  ∧  ∃ 𝑧 𝜒 ) ) | 
						
							| 16 |  | df-3an | ⊢ ( ( ∃ 𝑥 𝜑  ∧  ∃ 𝑦 𝜓  ∧  ∃ 𝑧 𝜒 )  ↔  ( ( ∃ 𝑥 𝜑  ∧  ∃ 𝑦 𝜓 )  ∧  ∃ 𝑧 𝜒 ) ) | 
						
							| 17 | 2 15 16 | 3bitr4i | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑  ∧  𝜓  ∧  𝜒 )  ↔  ( ∃ 𝑥 𝜑  ∧  ∃ 𝑦 𝜓  ∧  ∃ 𝑧 𝜒 ) ) |