Step |
Hyp |
Ref |
Expression |
1 |
|
eeanv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ) ) |
2 |
1
|
anbi1i |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ↔ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
3 |
|
df-3an |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
4 |
3
|
exbii |
⊢ ( ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ∃ 𝑧 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
5 |
|
19.42v |
⊢ ( ∃ 𝑧 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
6 |
4 5
|
bitri |
⊢ ( ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
7 |
6
|
2exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑦 𝜒 |
9 |
8
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑧 𝜒 |
10 |
9
|
19.41 |
⊢ ( ∃ 𝑦 ( ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ↔ ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
11 |
10
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ↔ ∃ 𝑥 ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
12 |
|
nfv |
⊢ Ⅎ 𝑥 𝜒 |
13 |
12
|
nfex |
⊢ Ⅎ 𝑥 ∃ 𝑧 𝜒 |
14 |
13
|
19.41 |
⊢ ( ∃ 𝑥 ( ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
15 |
7 11 14
|
3bitri |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
16 |
|
df-3an |
⊢ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ∧ ∃ 𝑧 𝜒 ) ↔ ( ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ) ∧ ∃ 𝑧 𝜒 ) ) |
17 |
2 15 16
|
3bitr4i |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜓 ∧ ∃ 𝑧 𝜒 ) ) |