Metamath Proof Explorer


Theorem eel000cT

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eel000cT.1 𝜑
eel000cT.2 𝜓
eel000cT.3 𝜒
eel000cT.4 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion eel000cT ( ⊤ → 𝜃 )

Proof

Step Hyp Ref Expression
1 eel000cT.1 𝜑
2 eel000cT.2 𝜓
3 eel000cT.3 𝜒
4 eel000cT.4 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
5 1 4 mp3an1 ( ( 𝜓𝜒 ) → 𝜃 )
6 2 5 mpan ( 𝜒𝜃 )
7 3 6 ax-mp 𝜃
8 7 a1i ( ⊤ → 𝜃 )