Metamath Proof Explorer


Theorem eel00cT

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eel00cT.1 𝜑
eel00cT.2 𝜓
eel00cT.3 ( ( 𝜑𝜓 ) → 𝜒 )
Assertion eel00cT ( ⊤ → 𝜒 )

Proof

Step Hyp Ref Expression
1 eel00cT.1 𝜑
2 eel00cT.2 𝜓
3 eel00cT.3 ( ( 𝜑𝜓 ) → 𝜒 )
4 1 3 mpan ( 𝜓𝜒 )
5 2 4 ax-mp 𝜒
6 5 a1i ( ⊤ → 𝜒 )