Metamath Proof Explorer


Theorem eel0T1

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eel0T1.1 𝜑
eel0T1.2 ( ⊤ → 𝜓 )
eel0T1.3 ( 𝜒𝜃 )
eel0T1.4 ( ( 𝜑𝜓𝜃 ) → 𝜏 )
Assertion eel0T1 ( 𝜒𝜏 )

Proof

Step Hyp Ref Expression
1 eel0T1.1 𝜑
2 eel0T1.2 ( ⊤ → 𝜓 )
3 eel0T1.3 ( 𝜒𝜃 )
4 eel0T1.4 ( ( 𝜑𝜓𝜃 ) → 𝜏 )
5 3anass ( ( 𝜑 ∧ ⊤ ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( ⊤ ∧ 𝜒 ) ) )
6 simpr ( ( 𝜑 ∧ ( ⊤ ∧ 𝜒 ) ) → ( ⊤ ∧ 𝜒 ) )
7 1 jctl ( ( ⊤ ∧ 𝜒 ) → ( 𝜑 ∧ ( ⊤ ∧ 𝜒 ) ) )
8 6 7 impbii ( ( 𝜑 ∧ ( ⊤ ∧ 𝜒 ) ) ↔ ( ⊤ ∧ 𝜒 ) )
9 truan ( ( ⊤ ∧ 𝜒 ) ↔ 𝜒 )
10 5 8 9 3bitri ( ( 𝜑 ∧ ⊤ ∧ 𝜒 ) ↔ 𝜒 )
11 2 4 syl3an2 ( ( 𝜑 ∧ ⊤ ∧ 𝜃 ) → 𝜏 )
12 3 11 syl3an3 ( ( 𝜑 ∧ ⊤ ∧ 𝜒 ) → 𝜏 )
13 10 12 sylbir ( 𝜒𝜏 )