Metamath Proof Explorer
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017)
(Proof modification is discouraged.) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
eel0TT.1 |
⊢ 𝜑 |
|
|
eel0TT.2 |
⊢ ( ⊤ → 𝜓 ) |
|
|
eel0TT.3 |
⊢ ( ⊤ → 𝜒 ) |
|
|
eel0TT.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
|
Assertion |
eel0TT |
⊢ 𝜃 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eel0TT.1 |
⊢ 𝜑 |
2 |
|
eel0TT.2 |
⊢ ( ⊤ → 𝜓 ) |
3 |
|
eel0TT.3 |
⊢ ( ⊤ → 𝜒 ) |
4 |
|
eel0TT.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
5 |
|
truan |
⊢ ( ( ⊤ ∧ 𝜒 ) ↔ 𝜒 ) |
6 |
1 4
|
mp3an1 |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
7 |
2 6
|
sylan |
⊢ ( ( ⊤ ∧ 𝜒 ) → 𝜃 ) |
8 |
5 7
|
sylbir |
⊢ ( 𝜒 → 𝜃 ) |
9 |
3 8
|
syl |
⊢ ( ⊤ → 𝜃 ) |
10 |
9
|
mptru |
⊢ 𝜃 |