Metamath Proof Explorer


Theorem eel12131

Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses eel12131.1 ( 𝜑𝜓 )
eel12131.2 ( ( 𝜑𝜒 ) → 𝜃 )
eel12131.3 ( ( 𝜑𝜏 ) → 𝜂 )
eel12131.4 ( ( 𝜓𝜃𝜂 ) → 𝜁 )
Assertion eel12131 ( ( 𝜑𝜒𝜏 ) → 𝜁 )

Proof

Step Hyp Ref Expression
1 eel12131.1 ( 𝜑𝜓 )
2 eel12131.2 ( ( 𝜑𝜒 ) → 𝜃 )
3 eel12131.3 ( ( 𝜑𝜏 ) → 𝜂 )
4 eel12131.4 ( ( 𝜓𝜃𝜂 ) → 𝜁 )
5 4 3exp ( 𝜓 → ( 𝜃 → ( 𝜂𝜁 ) ) )
6 1 2 5 syl2imc ( ( 𝜑𝜒 ) → ( 𝜑 → ( 𝜂𝜁 ) ) )
7 6 ex ( 𝜑 → ( 𝜒 → ( 𝜑 → ( 𝜂𝜁 ) ) ) )
8 7 pm2.43b ( 𝜒 → ( 𝜑 → ( 𝜂𝜁 ) ) )
9 8 com13 ( 𝜂 → ( 𝜑 → ( 𝜒𝜁 ) ) )
10 3 9 syl ( ( 𝜑𝜏 ) → ( 𝜑 → ( 𝜒𝜁 ) ) )
11 10 ex ( 𝜑 → ( 𝜏 → ( 𝜑 → ( 𝜒𝜁 ) ) ) )
12 11 pm2.43b ( 𝜏 → ( 𝜑 → ( 𝜒𝜁 ) ) )
13 12 3imp231 ( ( 𝜑𝜒𝜏 ) → 𝜁 )