Description: el2122old without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eel2122old.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
eel2122old.2 | ⊢ ( 𝜓 → 𝜃 ) | ||
eel2122old.3 | ⊢ ( 𝜓 → 𝜏 ) | ||
eel2122old.4 | ⊢ ( ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) → 𝜂 ) | ||
Assertion | eel2122old | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜂 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eel2122old.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) | |
2 | eel2122old.2 | ⊢ ( 𝜓 → 𝜃 ) | |
3 | eel2122old.3 | ⊢ ( 𝜓 → 𝜏 ) | |
4 | eel2122old.4 | ⊢ ( ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) → 𝜂 ) | |
5 | 4 | 3exp | ⊢ ( 𝜒 → ( 𝜃 → ( 𝜏 → 𝜂 ) ) ) |
6 | 1 5 | syl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜃 → ( 𝜏 → 𝜂 ) ) ) |
7 | 2 6 | syl5 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜓 → ( 𝜏 → 𝜂 ) ) ) |
8 | 3 7 | syl7 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜓 → ( 𝜓 → 𝜂 ) ) ) |
9 | 8 | ex | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜓 → ( 𝜓 → 𝜂 ) ) ) ) |
10 | 9 | pm2.43d | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜓 → 𝜂 ) ) ) |
11 | 10 | pm2.43d | ⊢ ( 𝜑 → ( 𝜓 → 𝜂 ) ) |
12 | 11 | imp | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜂 ) |