Metamath Proof Explorer


Theorem eel2122old

Description: el2122old without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eel2122old.1 ( ( 𝜑𝜓 ) → 𝜒 )
eel2122old.2 ( 𝜓𝜃 )
eel2122old.3 ( 𝜓𝜏 )
eel2122old.4 ( ( 𝜒𝜃𝜏 ) → 𝜂 )
Assertion eel2122old ( ( 𝜑𝜓 ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 eel2122old.1 ( ( 𝜑𝜓 ) → 𝜒 )
2 eel2122old.2 ( 𝜓𝜃 )
3 eel2122old.3 ( 𝜓𝜏 )
4 eel2122old.4 ( ( 𝜒𝜃𝜏 ) → 𝜂 )
5 4 3exp ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
6 1 5 syl ( ( 𝜑𝜓 ) → ( 𝜃 → ( 𝜏𝜂 ) ) )
7 2 6 syl5 ( ( 𝜑𝜓 ) → ( 𝜓 → ( 𝜏𝜂 ) ) )
8 3 7 syl7 ( ( 𝜑𝜓 ) → ( 𝜓 → ( 𝜓𝜂 ) ) )
9 8 ex ( 𝜑 → ( 𝜓 → ( 𝜓 → ( 𝜓𝜂 ) ) ) )
10 9 pm2.43d ( 𝜑 → ( 𝜓 → ( 𝜓𝜂 ) ) )
11 10 pm2.43d ( 𝜑 → ( 𝜓𝜂 ) )
12 11 imp ( ( 𝜑𝜓 ) → 𝜂 )