Metamath Proof Explorer


Theorem eelT

Description: An elimination deduction. (Contributed by Alan Sare, 5-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelT.1 ( ⊤ → 𝜑 )
eelT.2 ( 𝜑𝜓 )
Assertion eelT 𝜓

Proof

Step Hyp Ref Expression
1 eelT.1 ( ⊤ → 𝜑 )
2 eelT.2 ( 𝜑𝜓 )
3 1 2 syl ( ⊤ → 𝜓 )
4 3 mptru 𝜓