Metamath Proof Explorer
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017)
(Proof modification is discouraged.) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
eelT0.1 |
⊢ ( ⊤ → 𝜑 ) |
|
|
eelT0.2 |
⊢ 𝜓 |
|
|
eelT0.3 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
|
Assertion |
eelT0 |
⊢ 𝜒 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eelT0.1 |
⊢ ( ⊤ → 𝜑 ) |
2 |
|
eelT0.2 |
⊢ 𝜓 |
3 |
|
eelT0.3 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
4 |
1 3
|
sylan |
⊢ ( ( ⊤ ∧ 𝜓 ) → 𝜒 ) |
5 |
2 4
|
mpan2 |
⊢ ( ⊤ → 𝜒 ) |
6 |
5
|
mptru |
⊢ 𝜒 |