Metamath Proof Explorer


Theorem eelT11

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelT11.1 ( ⊤ → 𝜑 )
eelT11.2 ( 𝜓𝜒 )
eelT11.3 ( 𝜓𝜃 )
eelT11.4 ( ( 𝜑𝜒𝜃 ) → 𝜏 )
Assertion eelT11 ( 𝜓𝜏 )

Proof

Step Hyp Ref Expression
1 eelT11.1 ( ⊤ → 𝜑 )
2 eelT11.2 ( 𝜓𝜒 )
3 eelT11.3 ( 𝜓𝜃 )
4 eelT11.4 ( ( 𝜑𝜒𝜃 ) → 𝜏 )
5 3anass ( ( ⊤ ∧ 𝜓𝜓 ) ↔ ( ⊤ ∧ ( 𝜓𝜓 ) ) )
6 truan ( ( ⊤ ∧ ( 𝜓𝜓 ) ) ↔ ( 𝜓𝜓 ) )
7 anidm ( ( 𝜓𝜓 ) ↔ 𝜓 )
8 5 6 7 3bitri ( ( ⊤ ∧ 𝜓𝜓 ) ↔ 𝜓 )
9 1 4 syl3an1 ( ( ⊤ ∧ 𝜒𝜃 ) → 𝜏 )
10 2 9 syl3an2 ( ( ⊤ ∧ 𝜓𝜃 ) → 𝜏 )
11 3 10 syl3an3 ( ( ⊤ ∧ 𝜓𝜓 ) → 𝜏 )
12 8 11 sylbir ( 𝜓𝜏 )