Metamath Proof Explorer
		
		
		
		Description:  An elimination deduction.  (Contributed by Alan Sare, 4-Feb-2017)
       (Proof modification is discouraged.)  (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						eelT11.1 | 
						⊢ ( ⊤  →  𝜑 )  | 
					
					
						 | 
						 | 
						eelT11.2 | 
						⊢ ( 𝜓  →  𝜒 )  | 
					
					
						 | 
						 | 
						eelT11.3 | 
						⊢ ( 𝜓  →  𝜃 )  | 
					
					
						 | 
						 | 
						eelT11.4 | 
						⊢ ( ( 𝜑  ∧  𝜒  ∧  𝜃 )  →  𝜏 )  | 
					
				
					 | 
					Assertion | 
					eelT11 | 
					⊢  ( 𝜓  →  𝜏 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eelT11.1 | 
							⊢ ( ⊤  →  𝜑 )  | 
						
						
							| 2 | 
							
								
							 | 
							eelT11.2 | 
							⊢ ( 𝜓  →  𝜒 )  | 
						
						
							| 3 | 
							
								
							 | 
							eelT11.3 | 
							⊢ ( 𝜓  →  𝜃 )  | 
						
						
							| 4 | 
							
								
							 | 
							eelT11.4 | 
							⊢ ( ( 𝜑  ∧  𝜒  ∧  𝜃 )  →  𝜏 )  | 
						
						
							| 5 | 
							
								
							 | 
							3anass | 
							⊢ ( ( ⊤  ∧  𝜓  ∧  𝜓 )  ↔  ( ⊤  ∧  ( 𝜓  ∧  𝜓 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							truan | 
							⊢ ( ( ⊤  ∧  ( 𝜓  ∧  𝜓 ) )  ↔  ( 𝜓  ∧  𝜓 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							anidm | 
							⊢ ( ( 𝜓  ∧  𝜓 )  ↔  𝜓 )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							3bitri | 
							⊢ ( ( ⊤  ∧  𝜓  ∧  𝜓 )  ↔  𝜓 )  | 
						
						
							| 9 | 
							
								1 4
							 | 
							syl3an1 | 
							⊢ ( ( ⊤  ∧  𝜒  ∧  𝜃 )  →  𝜏 )  | 
						
						
							| 10 | 
							
								2 9
							 | 
							syl3an2 | 
							⊢ ( ( ⊤  ∧  𝜓  ∧  𝜃 )  →  𝜏 )  | 
						
						
							| 11 | 
							
								3 10
							 | 
							syl3an3 | 
							⊢ ( ( ⊤  ∧  𝜓  ∧  𝜓 )  →  𝜏 )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							sylbir | 
							⊢ ( 𝜓  →  𝜏 )  |