Metamath Proof Explorer


Theorem eelT12

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelT12.1 ( ⊤ → 𝜑 )
eelT12.2 ( 𝜓𝜒 )
eelT12.3 ( 𝜃𝜏 )
eelT12.4 ( ( 𝜑𝜒𝜏 ) → 𝜂 )
Assertion eelT12 ( ( 𝜓𝜃 ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 eelT12.1 ( ⊤ → 𝜑 )
2 eelT12.2 ( 𝜓𝜒 )
3 eelT12.3 ( 𝜃𝜏 )
4 eelT12.4 ( ( 𝜑𝜒𝜏 ) → 𝜂 )
5 3anass ( ( ⊤ ∧ 𝜓𝜃 ) ↔ ( ⊤ ∧ ( 𝜓𝜃 ) ) )
6 truan ( ( ⊤ ∧ ( 𝜓𝜃 ) ) ↔ ( 𝜓𝜃 ) )
7 5 6 bitri ( ( ⊤ ∧ 𝜓𝜃 ) ↔ ( 𝜓𝜃 ) )
8 1 4 syl3an1 ( ( ⊤ ∧ 𝜒𝜏 ) → 𝜂 )
9 2 8 syl3an2 ( ( ⊤ ∧ 𝜓𝜏 ) → 𝜂 )
10 3 9 syl3an3 ( ( ⊤ ∧ 𝜓𝜃 ) → 𝜂 )
11 7 10 sylbir ( ( 𝜓𝜃 ) → 𝜂 )