Metamath Proof Explorer
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017)
(Proof modification is discouraged.) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
eelT12.1 |
⊢ ( ⊤ → 𝜑 ) |
|
|
eelT12.2 |
⊢ ( 𝜓 → 𝜒 ) |
|
|
eelT12.3 |
⊢ ( 𝜃 → 𝜏 ) |
|
|
eelT12.4 |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜂 ) |
|
Assertion |
eelT12 |
⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜂 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eelT12.1 |
⊢ ( ⊤ → 𝜑 ) |
2 |
|
eelT12.2 |
⊢ ( 𝜓 → 𝜒 ) |
3 |
|
eelT12.3 |
⊢ ( 𝜃 → 𝜏 ) |
4 |
|
eelT12.4 |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜂 ) |
5 |
|
3anass |
⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜃 ) ↔ ( ⊤ ∧ ( 𝜓 ∧ 𝜃 ) ) ) |
6 |
|
truan |
⊢ ( ( ⊤ ∧ ( 𝜓 ∧ 𝜃 ) ) ↔ ( 𝜓 ∧ 𝜃 ) ) |
7 |
5 6
|
bitri |
⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜃 ) ↔ ( 𝜓 ∧ 𝜃 ) ) |
8 |
1 4
|
syl3an1 |
⊢ ( ( ⊤ ∧ 𝜒 ∧ 𝜏 ) → 𝜂 ) |
9 |
2 8
|
syl3an2 |
⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜏 ) → 𝜂 ) |
10 |
3 9
|
syl3an3 |
⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜃 ) → 𝜂 ) |
11 |
7 10
|
sylbir |
⊢ ( ( 𝜓 ∧ 𝜃 ) → 𝜂 ) |