Metamath Proof Explorer


Theorem eelTT

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelTT.1 ( ⊤ → 𝜑 )
eelTT.2 ( ⊤ → 𝜓 )
eelTT.3 ( ( 𝜑𝜓 ) → 𝜒 )
Assertion eelTT 𝜒

Proof

Step Hyp Ref Expression
1 eelTT.1 ( ⊤ → 𝜑 )
2 eelTT.2 ( ⊤ → 𝜓 )
3 eelTT.3 ( ( 𝜑𝜓 ) → 𝜒 )
4 truan ( ( ⊤ ∧ 𝜓 ) ↔ 𝜓 )
5 1 3 sylan ( ( ⊤ ∧ 𝜓 ) → 𝜒 )
6 4 5 sylbir ( 𝜓𝜒 )
7 2 6 syl ( ⊤ → 𝜒 )
8 7 mptru 𝜒