Metamath Proof Explorer
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017)
(Proof modification is discouraged.) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
eelTT.1 |
⊢ ( ⊤ → 𝜑 ) |
|
|
eelTT.2 |
⊢ ( ⊤ → 𝜓 ) |
|
|
eelTT.3 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
|
Assertion |
eelTT |
⊢ 𝜒 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eelTT.1 |
⊢ ( ⊤ → 𝜑 ) |
2 |
|
eelTT.2 |
⊢ ( ⊤ → 𝜓 ) |
3 |
|
eelTT.3 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) |
4 |
|
truan |
⊢ ( ( ⊤ ∧ 𝜓 ) ↔ 𝜓 ) |
5 |
1 3
|
sylan |
⊢ ( ( ⊤ ∧ 𝜓 ) → 𝜒 ) |
6 |
4 5
|
sylbir |
⊢ ( 𝜓 → 𝜒 ) |
7 |
2 6
|
syl |
⊢ ( ⊤ → 𝜒 ) |
8 |
7
|
mptru |
⊢ 𝜒 |