Metamath Proof Explorer


Theorem eelTT1

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelTT1.1 ( ⊤ → 𝜑 )
eelTT1.2 ( ⊤ → 𝜓 )
eelTT1.3 ( 𝜒𝜃 )
eelTT1.4 ( ( 𝜑𝜓𝜃 ) → 𝜏 )
Assertion eelTT1 ( 𝜒𝜏 )

Proof

Step Hyp Ref Expression
1 eelTT1.1 ( ⊤ → 𝜑 )
2 eelTT1.2 ( ⊤ → 𝜓 )
3 eelTT1.3 ( 𝜒𝜃 )
4 eelTT1.4 ( ( 𝜑𝜓𝜃 ) → 𝜏 )
5 3anass ( ( ⊤ ∧ ⊤ ∧ 𝜒 ) ↔ ( ⊤ ∧ ( ⊤ ∧ 𝜒 ) ) )
6 anabs5 ( ( ⊤ ∧ ( ⊤ ∧ 𝜒 ) ) ↔ ( ⊤ ∧ 𝜒 ) )
7 truan ( ( ⊤ ∧ 𝜒 ) ↔ 𝜒 )
8 5 6 7 3bitri ( ( ⊤ ∧ ⊤ ∧ 𝜒 ) ↔ 𝜒 )
9 1 4 syl3an1 ( ( ⊤ ∧ 𝜓𝜃 ) → 𝜏 )
10 2 9 syl3an2 ( ( ⊤ ∧ ⊤ ∧ 𝜃 ) → 𝜏 )
11 3 10 syl3an3 ( ( ⊤ ∧ ⊤ ∧ 𝜒 ) → 𝜏 )
12 8 11 sylbir ( 𝜒𝜏 )