Metamath Proof Explorer


Theorem eelTTT

Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eelTTT.1 ( ⊤ → 𝜑 )
eelTTT.2 ( ⊤ → 𝜓 )
eelTTT.3 ( ⊤ → 𝜒 )
eelTTT.4 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
Assertion eelTTT 𝜃

Proof

Step Hyp Ref Expression
1 eelTTT.1 ( ⊤ → 𝜑 )
2 eelTTT.2 ( ⊤ → 𝜓 )
3 eelTTT.3 ( ⊤ → 𝜒 )
4 eelTTT.4 ( ( 𝜑𝜓𝜒 ) → 𝜃 )
5 truan ( ( ⊤ ∧ 𝜒 ) ↔ 𝜒 )
6 3anass ( ( ⊤ ∧ 𝜓𝜒 ) ↔ ( ⊤ ∧ ( 𝜓𝜒 ) ) )
7 truan ( ( ⊤ ∧ ( 𝜓𝜒 ) ) ↔ ( 𝜓𝜒 ) )
8 6 7 bitri ( ( ⊤ ∧ 𝜓𝜒 ) ↔ ( 𝜓𝜒 ) )
9 1 4 syl3an1 ( ( ⊤ ∧ 𝜓𝜒 ) → 𝜃 )
10 8 9 sylbir ( ( 𝜓𝜒 ) → 𝜃 )
11 2 10 sylan ( ( ⊤ ∧ 𝜒 ) → 𝜃 )
12 5 11 sylbir ( 𝜒𝜃 )
13 3 12 syl ( ⊤ → 𝜃 )
14 13 mptru 𝜃