Metamath Proof Explorer
Description: An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017)
(Proof modification is discouraged.) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
eelTTT.1 |
⊢ ( ⊤ → 𝜑 ) |
|
|
eelTTT.2 |
⊢ ( ⊤ → 𝜓 ) |
|
|
eelTTT.3 |
⊢ ( ⊤ → 𝜒 ) |
|
|
eelTTT.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
|
Assertion |
eelTTT |
⊢ 𝜃 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eelTTT.1 |
⊢ ( ⊤ → 𝜑 ) |
2 |
|
eelTTT.2 |
⊢ ( ⊤ → 𝜓 ) |
3 |
|
eelTTT.3 |
⊢ ( ⊤ → 𝜒 ) |
4 |
|
eelTTT.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
5 |
|
truan |
⊢ ( ( ⊤ ∧ 𝜒 ) ↔ 𝜒 ) |
6 |
|
3anass |
⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜒 ) ↔ ( ⊤ ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
7 |
|
truan |
⊢ ( ( ⊤ ∧ ( 𝜓 ∧ 𝜒 ) ) ↔ ( 𝜓 ∧ 𝜒 ) ) |
8 |
6 7
|
bitri |
⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜒 ) ) |
9 |
1 4
|
syl3an1 |
⊢ ( ( ⊤ ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
10 |
8 9
|
sylbir |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
11 |
2 10
|
sylan |
⊢ ( ( ⊤ ∧ 𝜒 ) → 𝜃 ) |
12 |
5 11
|
sylbir |
⊢ ( 𝜒 → 𝜃 ) |
13 |
3 12
|
syl |
⊢ ( ⊤ → 𝜃 ) |
14 |
13
|
mptru |
⊢ 𝜃 |