| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eeor.1 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 2 |  | eeor.2 | ⊢ Ⅎ 𝑥 𝜓 | 
						
							| 3 |  | 19.43 | ⊢ ( ∃ 𝑦 ( 𝜑  ∨  𝜓 )  ↔  ( ∃ 𝑦 𝜑  ∨  ∃ 𝑦 𝜓 ) ) | 
						
							| 4 | 3 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑  ∨  𝜓 )  ↔  ∃ 𝑥 ( ∃ 𝑦 𝜑  ∨  ∃ 𝑦 𝜓 ) ) | 
						
							| 5 |  | 19.43 | ⊢ ( ∃ 𝑥 ( ∃ 𝑦 𝜑  ∨  ∃ 𝑦 𝜓 )  ↔  ( ∃ 𝑥 ∃ 𝑦 𝜑  ∨  ∃ 𝑥 ∃ 𝑦 𝜓 ) ) | 
						
							| 6 | 1 | 19.9 | ⊢ ( ∃ 𝑦 𝜑  ↔  𝜑 ) | 
						
							| 7 | 6 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑  ↔  ∃ 𝑥 𝜑 ) | 
						
							| 8 |  | excom | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜓  ↔  ∃ 𝑦 ∃ 𝑥 𝜓 ) | 
						
							| 9 | 2 | 19.9 | ⊢ ( ∃ 𝑥 𝜓  ↔  𝜓 ) | 
						
							| 10 | 9 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑥 𝜓  ↔  ∃ 𝑦 𝜓 ) | 
						
							| 11 | 8 10 | bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜓  ↔  ∃ 𝑦 𝜓 ) | 
						
							| 12 | 7 11 | orbi12i | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑  ∨  ∃ 𝑥 ∃ 𝑦 𝜓 )  ↔  ( ∃ 𝑥 𝜑  ∨  ∃ 𝑦 𝜓 ) ) | 
						
							| 13 | 5 12 | bitri | ⊢ ( ∃ 𝑥 ( ∃ 𝑦 𝜑  ∨  ∃ 𝑦 𝜓 )  ↔  ( ∃ 𝑥 𝜑  ∨  ∃ 𝑦 𝜓 ) ) | 
						
							| 14 | 4 13 | bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝜑  ∨  𝜓 )  ↔  ( ∃ 𝑥 𝜑  ∨  ∃ 𝑦 𝜓 ) ) |