Metamath Proof Explorer


Theorem eexinst11

Description: exinst11 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses eexinst11.1 ( 𝜑 → ∃ 𝑥 𝜓 )
eexinst11.2 ( 𝜑 → ( 𝜓𝜒 ) )
eexinst11.3 ( 𝜑 → ∀ 𝑥 𝜑 )
eexinst11.4 ( 𝜒 → ∀ 𝑥 𝜒 )
Assertion eexinst11 ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 eexinst11.1 ( 𝜑 → ∃ 𝑥 𝜓 )
2 eexinst11.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 eexinst11.3 ( 𝜑 → ∀ 𝑥 𝜑 )
4 eexinst11.4 ( 𝜒 → ∀ 𝑥 𝜒 )
5 3 4 2 exlimdh ( 𝜑 → ( ∃ 𝑥 𝜓𝜒 ) )
6 1 5 syl5com ( 𝜑 → ( 𝜑𝜒 ) )
7 6 pm2.43i ( 𝜑𝜒 )