Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Conventional Metamath proofs, some derived from VD proofs
eexinst11
Metamath Proof Explorer
Description: exinst11 without virtual deductions. (Contributed by Alan Sare , 21-Apr-2013) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
eexinst11.1
⊢ ( 𝜑 → ∃ 𝑥 𝜓 )
eexinst11.2
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) )
eexinst11.3
⊢ ( 𝜑 → ∀ 𝑥 𝜑 )
eexinst11.4
⊢ ( 𝜒 → ∀ 𝑥 𝜒 )
Assertion
eexinst11
⊢ ( 𝜑 → 𝜒 )
Proof
Step
Hyp
Ref
Expression
1
eexinst11.1
⊢ ( 𝜑 → ∃ 𝑥 𝜓 )
2
eexinst11.2
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) )
3
eexinst11.3
⊢ ( 𝜑 → ∀ 𝑥 𝜑 )
4
eexinst11.4
⊢ ( 𝜒 → ∀ 𝑥 𝜒 )
5
3 4 2
exlimdh
⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 → 𝜒 ) )
6
1 5
syl5com
⊢ ( 𝜑 → ( 𝜑 → 𝜒 ) )
7
6
pm2.43i
⊢ ( 𝜑 → 𝜒 )