Step |
Hyp |
Ref |
Expression |
1 |
|
ef01bnd.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( i · 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
2 |
|
ax-icn |
⊢ i ∈ ℂ |
3 |
|
0xr |
⊢ 0 ∈ ℝ* |
4 |
|
1re |
⊢ 1 ∈ ℝ |
5 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) ) |
6 |
3 4 5
|
mp2an |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) |
7 |
6
|
simp1bi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℝ ) |
8 |
7
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℂ ) |
9 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
10 |
2 8 9
|
sylancr |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( i · 𝐴 ) ∈ ℂ ) |
11 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
12 |
1
|
eftlcl |
⊢ ( ( ( i · 𝐴 ) ∈ ℂ ∧ 4 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
13 |
10 11 12
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
14 |
13
|
abscld |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
15 |
|
reexpcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 4 ∈ ℕ0 ) → ( 𝐴 ↑ 4 ) ∈ ℝ ) |
16 |
7 11 15
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 4 ) ∈ ℝ ) |
17 |
|
4re |
⊢ 4 ∈ ℝ |
18 |
17 4
|
readdcli |
⊢ ( 4 + 1 ) ∈ ℝ |
19 |
|
faccl |
⊢ ( 4 ∈ ℕ0 → ( ! ‘ 4 ) ∈ ℕ ) |
20 |
11 19
|
ax-mp |
⊢ ( ! ‘ 4 ) ∈ ℕ |
21 |
|
4nn |
⊢ 4 ∈ ℕ |
22 |
20 21
|
nnmulcli |
⊢ ( ( ! ‘ 4 ) · 4 ) ∈ ℕ |
23 |
|
nndivre |
⊢ ( ( ( 4 + 1 ) ∈ ℝ ∧ ( ( ! ‘ 4 ) · 4 ) ∈ ℕ ) → ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ∈ ℝ ) |
24 |
18 22 23
|
mp2an |
⊢ ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ∈ ℝ |
25 |
|
remulcl |
⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ∈ ℝ ) → ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) ∈ ℝ ) |
26 |
16 24 25
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) ∈ ℝ ) |
27 |
|
6nn |
⊢ 6 ∈ ℕ |
28 |
|
nndivre |
⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ 6 ∈ ℕ ) → ( ( 𝐴 ↑ 4 ) / 6 ) ∈ ℝ ) |
29 |
16 27 28
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) / 6 ) ∈ ℝ ) |
30 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ ( i · 𝐴 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ ( i · 𝐴 ) ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
31 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( abs ‘ ( i · 𝐴 ) ) ↑ 4 ) / ( ! ‘ 4 ) ) · ( ( 1 / ( 4 + 1 ) ) ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( abs ‘ ( i · 𝐴 ) ) ↑ 4 ) / ( ! ‘ 4 ) ) · ( ( 1 / ( 4 + 1 ) ) ↑ 𝑛 ) ) ) |
32 |
21
|
a1i |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 4 ∈ ℕ ) |
33 |
|
absmul |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( i · 𝐴 ) ) = ( ( abs ‘ i ) · ( abs ‘ 𝐴 ) ) ) |
34 |
2 8 33
|
sylancr |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( i · 𝐴 ) ) = ( ( abs ‘ i ) · ( abs ‘ 𝐴 ) ) ) |
35 |
|
absi |
⊢ ( abs ‘ i ) = 1 |
36 |
35
|
oveq1i |
⊢ ( ( abs ‘ i ) · ( abs ‘ 𝐴 ) ) = ( 1 · ( abs ‘ 𝐴 ) ) |
37 |
6
|
simp2bi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < 𝐴 ) |
38 |
7 37
|
elrpd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℝ+ ) |
39 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
40 |
|
rpge0 |
⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ 𝐴 ) |
41 |
39 40
|
absidd |
⊢ ( 𝐴 ∈ ℝ+ → ( abs ‘ 𝐴 ) = 𝐴 ) |
42 |
38 41
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
43 |
42
|
oveq2d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 1 · ( abs ‘ 𝐴 ) ) = ( 1 · 𝐴 ) ) |
44 |
36 43
|
eqtrid |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( abs ‘ i ) · ( abs ‘ 𝐴 ) ) = ( 1 · 𝐴 ) ) |
45 |
8
|
mulid2d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 1 · 𝐴 ) = 𝐴 ) |
46 |
34 44 45
|
3eqtrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( i · 𝐴 ) ) = 𝐴 ) |
47 |
6
|
simp3bi |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ≤ 1 ) |
48 |
46 47
|
eqbrtrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ ( i · 𝐴 ) ) ≤ 1 ) |
49 |
1 30 31 32 10 48
|
eftlub |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( ( abs ‘ ( i · 𝐴 ) ) ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) ) |
50 |
46
|
oveq1d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( abs ‘ ( i · 𝐴 ) ) ↑ 4 ) = ( 𝐴 ↑ 4 ) ) |
51 |
50
|
oveq1d |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( abs ‘ ( i · 𝐴 ) ) ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) = ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) ) |
52 |
49 51
|
breqtrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ≤ ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) ) |
53 |
|
3pos |
⊢ 0 < 3 |
54 |
|
0re |
⊢ 0 ∈ ℝ |
55 |
|
3re |
⊢ 3 ∈ ℝ |
56 |
|
5re |
⊢ 5 ∈ ℝ |
57 |
54 55 56
|
ltadd1i |
⊢ ( 0 < 3 ↔ ( 0 + 5 ) < ( 3 + 5 ) ) |
58 |
53 57
|
mpbi |
⊢ ( 0 + 5 ) < ( 3 + 5 ) |
59 |
|
5cn |
⊢ 5 ∈ ℂ |
60 |
59
|
addid2i |
⊢ ( 0 + 5 ) = 5 |
61 |
|
cu2 |
⊢ ( 2 ↑ 3 ) = 8 |
62 |
|
5p3e8 |
⊢ ( 5 + 3 ) = 8 |
63 |
|
3cn |
⊢ 3 ∈ ℂ |
64 |
59 63
|
addcomi |
⊢ ( 5 + 3 ) = ( 3 + 5 ) |
65 |
61 62 64
|
3eqtr2ri |
⊢ ( 3 + 5 ) = ( 2 ↑ 3 ) |
66 |
58 60 65
|
3brtr3i |
⊢ 5 < ( 2 ↑ 3 ) |
67 |
|
2re |
⊢ 2 ∈ ℝ |
68 |
|
1le2 |
⊢ 1 ≤ 2 |
69 |
|
4z |
⊢ 4 ∈ ℤ |
70 |
|
3lt4 |
⊢ 3 < 4 |
71 |
55 17 70
|
ltleii |
⊢ 3 ≤ 4 |
72 |
|
3z |
⊢ 3 ∈ ℤ |
73 |
72
|
eluz1i |
⊢ ( 4 ∈ ( ℤ≥ ‘ 3 ) ↔ ( 4 ∈ ℤ ∧ 3 ≤ 4 ) ) |
74 |
69 71 73
|
mpbir2an |
⊢ 4 ∈ ( ℤ≥ ‘ 3 ) |
75 |
|
leexp2a |
⊢ ( ( 2 ∈ ℝ ∧ 1 ≤ 2 ∧ 4 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 ↑ 3 ) ≤ ( 2 ↑ 4 ) ) |
76 |
67 68 74 75
|
mp3an |
⊢ ( 2 ↑ 3 ) ≤ ( 2 ↑ 4 ) |
77 |
|
8re |
⊢ 8 ∈ ℝ |
78 |
61 77
|
eqeltri |
⊢ ( 2 ↑ 3 ) ∈ ℝ |
79 |
|
2nn |
⊢ 2 ∈ ℕ |
80 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 4 ∈ ℕ0 ) → ( 2 ↑ 4 ) ∈ ℕ ) |
81 |
79 11 80
|
mp2an |
⊢ ( 2 ↑ 4 ) ∈ ℕ |
82 |
81
|
nnrei |
⊢ ( 2 ↑ 4 ) ∈ ℝ |
83 |
56 78 82
|
ltletri |
⊢ ( ( 5 < ( 2 ↑ 3 ) ∧ ( 2 ↑ 3 ) ≤ ( 2 ↑ 4 ) ) → 5 < ( 2 ↑ 4 ) ) |
84 |
66 76 83
|
mp2an |
⊢ 5 < ( 2 ↑ 4 ) |
85 |
|
6re |
⊢ 6 ∈ ℝ |
86 |
85 82
|
remulcli |
⊢ ( 6 · ( 2 ↑ 4 ) ) ∈ ℝ |
87 |
|
6pos |
⊢ 0 < 6 |
88 |
81
|
nngt0i |
⊢ 0 < ( 2 ↑ 4 ) |
89 |
85 82 87 88
|
mulgt0ii |
⊢ 0 < ( 6 · ( 2 ↑ 4 ) ) |
90 |
56 82 86 89
|
ltdiv1ii |
⊢ ( 5 < ( 2 ↑ 4 ) ↔ ( 5 / ( 6 · ( 2 ↑ 4 ) ) ) < ( ( 2 ↑ 4 ) / ( 6 · ( 2 ↑ 4 ) ) ) ) |
91 |
84 90
|
mpbi |
⊢ ( 5 / ( 6 · ( 2 ↑ 4 ) ) ) < ( ( 2 ↑ 4 ) / ( 6 · ( 2 ↑ 4 ) ) ) |
92 |
|
df-5 |
⊢ 5 = ( 4 + 1 ) |
93 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
94 |
93
|
fveq2i |
⊢ ( ! ‘ 4 ) = ( ! ‘ ( 3 + 1 ) ) |
95 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
96 |
|
facp1 |
⊢ ( 3 ∈ ℕ0 → ( ! ‘ ( 3 + 1 ) ) = ( ( ! ‘ 3 ) · ( 3 + 1 ) ) ) |
97 |
95 96
|
ax-mp |
⊢ ( ! ‘ ( 3 + 1 ) ) = ( ( ! ‘ 3 ) · ( 3 + 1 ) ) |
98 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
99 |
98 93
|
eqtr2i |
⊢ ( 3 + 1 ) = ( 2 ↑ 2 ) |
100 |
99
|
oveq2i |
⊢ ( ( ! ‘ 3 ) · ( 3 + 1 ) ) = ( ( ! ‘ 3 ) · ( 2 ↑ 2 ) ) |
101 |
94 97 100
|
3eqtri |
⊢ ( ! ‘ 4 ) = ( ( ! ‘ 3 ) · ( 2 ↑ 2 ) ) |
102 |
101
|
oveq1i |
⊢ ( ( ! ‘ 4 ) · ( 2 ↑ 2 ) ) = ( ( ( ! ‘ 3 ) · ( 2 ↑ 2 ) ) · ( 2 ↑ 2 ) ) |
103 |
98
|
oveq2i |
⊢ ( ( ! ‘ 4 ) · ( 2 ↑ 2 ) ) = ( ( ! ‘ 4 ) · 4 ) |
104 |
|
fac3 |
⊢ ( ! ‘ 3 ) = 6 |
105 |
|
6cn |
⊢ 6 ∈ ℂ |
106 |
104 105
|
eqeltri |
⊢ ( ! ‘ 3 ) ∈ ℂ |
107 |
17
|
recni |
⊢ 4 ∈ ℂ |
108 |
98 107
|
eqeltri |
⊢ ( 2 ↑ 2 ) ∈ ℂ |
109 |
106 108 108
|
mulassi |
⊢ ( ( ( ! ‘ 3 ) · ( 2 ↑ 2 ) ) · ( 2 ↑ 2 ) ) = ( ( ! ‘ 3 ) · ( ( 2 ↑ 2 ) · ( 2 ↑ 2 ) ) ) |
110 |
102 103 109
|
3eqtr3i |
⊢ ( ( ! ‘ 4 ) · 4 ) = ( ( ! ‘ 3 ) · ( ( 2 ↑ 2 ) · ( 2 ↑ 2 ) ) ) |
111 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
112 |
111
|
oveq2i |
⊢ ( 2 ↑ ( 2 + 2 ) ) = ( 2 ↑ 4 ) |
113 |
|
2cn |
⊢ 2 ∈ ℂ |
114 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
115 |
|
expadd |
⊢ ( ( 2 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 2 ∈ ℕ0 ) → ( 2 ↑ ( 2 + 2 ) ) = ( ( 2 ↑ 2 ) · ( 2 ↑ 2 ) ) ) |
116 |
113 114 114 115
|
mp3an |
⊢ ( 2 ↑ ( 2 + 2 ) ) = ( ( 2 ↑ 2 ) · ( 2 ↑ 2 ) ) |
117 |
112 116
|
eqtr3i |
⊢ ( 2 ↑ 4 ) = ( ( 2 ↑ 2 ) · ( 2 ↑ 2 ) ) |
118 |
117
|
oveq2i |
⊢ ( ( ! ‘ 3 ) · ( 2 ↑ 4 ) ) = ( ( ! ‘ 3 ) · ( ( 2 ↑ 2 ) · ( 2 ↑ 2 ) ) ) |
119 |
104
|
oveq1i |
⊢ ( ( ! ‘ 3 ) · ( 2 ↑ 4 ) ) = ( 6 · ( 2 ↑ 4 ) ) |
120 |
110 118 119
|
3eqtr2ri |
⊢ ( 6 · ( 2 ↑ 4 ) ) = ( ( ! ‘ 4 ) · 4 ) |
121 |
92 120
|
oveq12i |
⊢ ( 5 / ( 6 · ( 2 ↑ 4 ) ) ) = ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) |
122 |
81
|
nncni |
⊢ ( 2 ↑ 4 ) ∈ ℂ |
123 |
122
|
mulid2i |
⊢ ( 1 · ( 2 ↑ 4 ) ) = ( 2 ↑ 4 ) |
124 |
123
|
oveq1i |
⊢ ( ( 1 · ( 2 ↑ 4 ) ) / ( 6 · ( 2 ↑ 4 ) ) ) = ( ( 2 ↑ 4 ) / ( 6 · ( 2 ↑ 4 ) ) ) |
125 |
81
|
nnne0i |
⊢ ( 2 ↑ 4 ) ≠ 0 |
126 |
122 125
|
dividi |
⊢ ( ( 2 ↑ 4 ) / ( 2 ↑ 4 ) ) = 1 |
127 |
126
|
oveq2i |
⊢ ( ( 1 / 6 ) · ( ( 2 ↑ 4 ) / ( 2 ↑ 4 ) ) ) = ( ( 1 / 6 ) · 1 ) |
128 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
129 |
85 87
|
gt0ne0ii |
⊢ 6 ≠ 0 |
130 |
128 105 122 122 129 125
|
divmuldivi |
⊢ ( ( 1 / 6 ) · ( ( 2 ↑ 4 ) / ( 2 ↑ 4 ) ) ) = ( ( 1 · ( 2 ↑ 4 ) ) / ( 6 · ( 2 ↑ 4 ) ) ) |
131 |
85 129
|
rereccli |
⊢ ( 1 / 6 ) ∈ ℝ |
132 |
131
|
recni |
⊢ ( 1 / 6 ) ∈ ℂ |
133 |
132
|
mulid1i |
⊢ ( ( 1 / 6 ) · 1 ) = ( 1 / 6 ) |
134 |
127 130 133
|
3eqtr3i |
⊢ ( ( 1 · ( 2 ↑ 4 ) ) / ( 6 · ( 2 ↑ 4 ) ) ) = ( 1 / 6 ) |
135 |
124 134
|
eqtr3i |
⊢ ( ( 2 ↑ 4 ) / ( 6 · ( 2 ↑ 4 ) ) ) = ( 1 / 6 ) |
136 |
91 121 135
|
3brtr3i |
⊢ ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) < ( 1 / 6 ) |
137 |
|
rpexpcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 4 ∈ ℤ ) → ( 𝐴 ↑ 4 ) ∈ ℝ+ ) |
138 |
38 69 137
|
sylancl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 4 ) ∈ ℝ+ ) |
139 |
|
elrp |
⊢ ( ( 𝐴 ↑ 4 ) ∈ ℝ+ ↔ ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 4 ) ) ) |
140 |
|
ltmul2 |
⊢ ( ( ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ∈ ℝ ∧ ( 1 / 6 ) ∈ ℝ ∧ ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 4 ) ) ) → ( ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) < ( 1 / 6 ) ↔ ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) < ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) ) |
141 |
24 131 140
|
mp3an12 |
⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 4 ) ) → ( ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) < ( 1 / 6 ) ↔ ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) < ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) ) |
142 |
139 141
|
sylbi |
⊢ ( ( 𝐴 ↑ 4 ) ∈ ℝ+ → ( ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) < ( 1 / 6 ) ↔ ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) < ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) ) |
143 |
138 142
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) < ( 1 / 6 ) ↔ ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) < ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) ) |
144 |
136 143
|
mpbii |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) < ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) |
145 |
16
|
recnd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 4 ) ∈ ℂ ) |
146 |
|
divrec |
⊢ ( ( ( 𝐴 ↑ 4 ) ∈ ℂ ∧ 6 ∈ ℂ ∧ 6 ≠ 0 ) → ( ( 𝐴 ↑ 4 ) / 6 ) = ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) |
147 |
105 129 146
|
mp3an23 |
⊢ ( ( 𝐴 ↑ 4 ) ∈ ℂ → ( ( 𝐴 ↑ 4 ) / 6 ) = ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) |
148 |
145 147
|
syl |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) / 6 ) = ( ( 𝐴 ↑ 4 ) · ( 1 / 6 ) ) ) |
149 |
144 148
|
breqtrrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 4 ) · ( ( 4 + 1 ) / ( ( ! ‘ 4 ) · 4 ) ) ) < ( ( 𝐴 ↑ 4 ) / 6 ) ) |
150 |
14 26 29 52 149
|
lelttrd |
⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) < ( ( 𝐴 ↑ 4 ) / 6 ) ) |