| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ef01bnd.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( i  ·  𝐴 ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 2 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 3 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 4 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 5 |  | elioc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ )  →  ( 𝐴  ∈  ( 0 (,] 1 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 ) ) ) | 
						
							| 6 | 3 4 5 | mp2an | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  ↔  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴  ∧  𝐴  ≤  1 ) ) | 
						
							| 7 | 6 | simp1bi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  𝐴  ∈  ℝ ) | 
						
							| 8 | 7 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  𝐴  ∈  ℂ ) | 
						
							| 9 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 10 | 2 8 9 | sylancr | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 11 |  | 4nn0 | ⊢ 4  ∈  ℕ0 | 
						
							| 12 | 1 | eftlcl | ⊢ ( ( ( i  ·  𝐴 )  ∈  ℂ  ∧  4  ∈  ℕ0 )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 13 | 10 11 12 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 14 | 13 | abscld | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 15 |  | reexpcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  4  ∈  ℕ0 )  →  ( 𝐴 ↑ 4 )  ∈  ℝ ) | 
						
							| 16 | 7 11 15 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 4 )  ∈  ℝ ) | 
						
							| 17 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 18 | 17 4 | readdcli | ⊢ ( 4  +  1 )  ∈  ℝ | 
						
							| 19 |  | faccl | ⊢ ( 4  ∈  ℕ0  →  ( ! ‘ 4 )  ∈  ℕ ) | 
						
							| 20 | 11 19 | ax-mp | ⊢ ( ! ‘ 4 )  ∈  ℕ | 
						
							| 21 |  | 4nn | ⊢ 4  ∈  ℕ | 
						
							| 22 | 20 21 | nnmulcli | ⊢ ( ( ! ‘ 4 )  ·  4 )  ∈  ℕ | 
						
							| 23 |  | nndivre | ⊢ ( ( ( 4  +  1 )  ∈  ℝ  ∧  ( ( ! ‘ 4 )  ·  4 )  ∈  ℕ )  →  ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) )  ∈  ℝ ) | 
						
							| 24 | 18 22 23 | mp2an | ⊢ ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) )  ∈  ℝ | 
						
							| 25 |  | remulcl | ⊢ ( ( ( 𝐴 ↑ 4 )  ∈  ℝ  ∧  ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) )  ∈  ℝ )  →  ( ( 𝐴 ↑ 4 )  ·  ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) ) )  ∈  ℝ ) | 
						
							| 26 | 16 24 25 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 4 )  ·  ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) ) )  ∈  ℝ ) | 
						
							| 27 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 28 |  | nndivre | ⊢ ( ( ( 𝐴 ↑ 4 )  ∈  ℝ  ∧  6  ∈  ℕ )  →  ( ( 𝐴 ↑ 4 )  /  6 )  ∈  ℝ ) | 
						
							| 29 | 16 27 28 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 4 )  /  6 )  ∈  ℝ ) | 
						
							| 30 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( ( abs ‘ ( i  ·  𝐴 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( abs ‘ ( i  ·  𝐴 ) ) ↑ 𝑛 )  /  ( ! ‘ 𝑛 ) ) ) | 
						
							| 31 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( abs ‘ ( i  ·  𝐴 ) ) ↑ 4 )  /  ( ! ‘ 4 ) )  ·  ( ( 1  /  ( 4  +  1 ) ) ↑ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( ( ( abs ‘ ( i  ·  𝐴 ) ) ↑ 4 )  /  ( ! ‘ 4 ) )  ·  ( ( 1  /  ( 4  +  1 ) ) ↑ 𝑛 ) ) ) | 
						
							| 32 | 21 | a1i | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  4  ∈  ℕ ) | 
						
							| 33 |  | absmul | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( abs ‘ ( i  ·  𝐴 ) )  =  ( ( abs ‘ i )  ·  ( abs ‘ 𝐴 ) ) ) | 
						
							| 34 | 2 8 33 | sylancr | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ ( i  ·  𝐴 ) )  =  ( ( abs ‘ i )  ·  ( abs ‘ 𝐴 ) ) ) | 
						
							| 35 |  | absi | ⊢ ( abs ‘ i )  =  1 | 
						
							| 36 | 35 | oveq1i | ⊢ ( ( abs ‘ i )  ·  ( abs ‘ 𝐴 ) )  =  ( 1  ·  ( abs ‘ 𝐴 ) ) | 
						
							| 37 | 6 | simp2bi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  0  <  𝐴 ) | 
						
							| 38 | 7 37 | elrpd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  𝐴  ∈  ℝ+ ) | 
						
							| 39 |  | rpre | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ ) | 
						
							| 40 |  | rpge0 | ⊢ ( 𝐴  ∈  ℝ+  →  0  ≤  𝐴 ) | 
						
							| 41 | 39 40 | absidd | ⊢ ( 𝐴  ∈  ℝ+  →  ( abs ‘ 𝐴 )  =  𝐴 ) | 
						
							| 42 | 38 41 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ 𝐴 )  =  𝐴 ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 1  ·  ( abs ‘ 𝐴 ) )  =  ( 1  ·  𝐴 ) ) | 
						
							| 44 | 36 43 | eqtrid | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( abs ‘ i )  ·  ( abs ‘ 𝐴 ) )  =  ( 1  ·  𝐴 ) ) | 
						
							| 45 | 8 | mullidd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 46 | 34 44 45 | 3eqtrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ ( i  ·  𝐴 ) )  =  𝐴 ) | 
						
							| 47 | 6 | simp3bi | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  𝐴  ≤  1 ) | 
						
							| 48 | 46 47 | eqbrtrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ ( i  ·  𝐴 ) )  ≤  1 ) | 
						
							| 49 | 1 30 31 32 10 48 | eftlub | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) )  ≤  ( ( ( abs ‘ ( i  ·  𝐴 ) ) ↑ 4 )  ·  ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) ) ) ) | 
						
							| 50 | 46 | oveq1d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( abs ‘ ( i  ·  𝐴 ) ) ↑ 4 )  =  ( 𝐴 ↑ 4 ) ) | 
						
							| 51 | 50 | oveq1d | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( abs ‘ ( i  ·  𝐴 ) ) ↑ 4 )  ·  ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) ) )  =  ( ( 𝐴 ↑ 4 )  ·  ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) ) ) ) | 
						
							| 52 | 49 51 | breqtrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) )  ≤  ( ( 𝐴 ↑ 4 )  ·  ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) ) ) ) | 
						
							| 53 |  | 3pos | ⊢ 0  <  3 | 
						
							| 54 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 55 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 56 |  | 5re | ⊢ 5  ∈  ℝ | 
						
							| 57 | 54 55 56 | ltadd1i | ⊢ ( 0  <  3  ↔  ( 0  +  5 )  <  ( 3  +  5 ) ) | 
						
							| 58 | 53 57 | mpbi | ⊢ ( 0  +  5 )  <  ( 3  +  5 ) | 
						
							| 59 |  | 5cn | ⊢ 5  ∈  ℂ | 
						
							| 60 | 59 | addlidi | ⊢ ( 0  +  5 )  =  5 | 
						
							| 61 |  | cu2 | ⊢ ( 2 ↑ 3 )  =  8 | 
						
							| 62 |  | 5p3e8 | ⊢ ( 5  +  3 )  =  8 | 
						
							| 63 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 64 | 59 63 | addcomi | ⊢ ( 5  +  3 )  =  ( 3  +  5 ) | 
						
							| 65 | 61 62 64 | 3eqtr2ri | ⊢ ( 3  +  5 )  =  ( 2 ↑ 3 ) | 
						
							| 66 | 58 60 65 | 3brtr3i | ⊢ 5  <  ( 2 ↑ 3 ) | 
						
							| 67 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 68 |  | 1le2 | ⊢ 1  ≤  2 | 
						
							| 69 |  | 4z | ⊢ 4  ∈  ℤ | 
						
							| 70 |  | 3lt4 | ⊢ 3  <  4 | 
						
							| 71 | 55 17 70 | ltleii | ⊢ 3  ≤  4 | 
						
							| 72 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 73 | 72 | eluz1i | ⊢ ( 4  ∈  ( ℤ≥ ‘ 3 )  ↔  ( 4  ∈  ℤ  ∧  3  ≤  4 ) ) | 
						
							| 74 | 69 71 73 | mpbir2an | ⊢ 4  ∈  ( ℤ≥ ‘ 3 ) | 
						
							| 75 |  | leexp2a | ⊢ ( ( 2  ∈  ℝ  ∧  1  ≤  2  ∧  4  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 2 ↑ 3 )  ≤  ( 2 ↑ 4 ) ) | 
						
							| 76 | 67 68 74 75 | mp3an | ⊢ ( 2 ↑ 3 )  ≤  ( 2 ↑ 4 ) | 
						
							| 77 |  | 8re | ⊢ 8  ∈  ℝ | 
						
							| 78 | 61 77 | eqeltri | ⊢ ( 2 ↑ 3 )  ∈  ℝ | 
						
							| 79 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 80 |  | nnexpcl | ⊢ ( ( 2  ∈  ℕ  ∧  4  ∈  ℕ0 )  →  ( 2 ↑ 4 )  ∈  ℕ ) | 
						
							| 81 | 79 11 80 | mp2an | ⊢ ( 2 ↑ 4 )  ∈  ℕ | 
						
							| 82 | 81 | nnrei | ⊢ ( 2 ↑ 4 )  ∈  ℝ | 
						
							| 83 | 56 78 82 | ltletri | ⊢ ( ( 5  <  ( 2 ↑ 3 )  ∧  ( 2 ↑ 3 )  ≤  ( 2 ↑ 4 ) )  →  5  <  ( 2 ↑ 4 ) ) | 
						
							| 84 | 66 76 83 | mp2an | ⊢ 5  <  ( 2 ↑ 4 ) | 
						
							| 85 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 86 | 85 82 | remulcli | ⊢ ( 6  ·  ( 2 ↑ 4 ) )  ∈  ℝ | 
						
							| 87 |  | 6pos | ⊢ 0  <  6 | 
						
							| 88 | 81 | nngt0i | ⊢ 0  <  ( 2 ↑ 4 ) | 
						
							| 89 | 85 82 87 88 | mulgt0ii | ⊢ 0  <  ( 6  ·  ( 2 ↑ 4 ) ) | 
						
							| 90 | 56 82 86 89 | ltdiv1ii | ⊢ ( 5  <  ( 2 ↑ 4 )  ↔  ( 5  /  ( 6  ·  ( 2 ↑ 4 ) ) )  <  ( ( 2 ↑ 4 )  /  ( 6  ·  ( 2 ↑ 4 ) ) ) ) | 
						
							| 91 | 84 90 | mpbi | ⊢ ( 5  /  ( 6  ·  ( 2 ↑ 4 ) ) )  <  ( ( 2 ↑ 4 )  /  ( 6  ·  ( 2 ↑ 4 ) ) ) | 
						
							| 92 |  | df-5 | ⊢ 5  =  ( 4  +  1 ) | 
						
							| 93 |  | df-4 | ⊢ 4  =  ( 3  +  1 ) | 
						
							| 94 | 93 | fveq2i | ⊢ ( ! ‘ 4 )  =  ( ! ‘ ( 3  +  1 ) ) | 
						
							| 95 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 96 |  | facp1 | ⊢ ( 3  ∈  ℕ0  →  ( ! ‘ ( 3  +  1 ) )  =  ( ( ! ‘ 3 )  ·  ( 3  +  1 ) ) ) | 
						
							| 97 | 95 96 | ax-mp | ⊢ ( ! ‘ ( 3  +  1 ) )  =  ( ( ! ‘ 3 )  ·  ( 3  +  1 ) ) | 
						
							| 98 |  | sq2 | ⊢ ( 2 ↑ 2 )  =  4 | 
						
							| 99 | 98 93 | eqtr2i | ⊢ ( 3  +  1 )  =  ( 2 ↑ 2 ) | 
						
							| 100 | 99 | oveq2i | ⊢ ( ( ! ‘ 3 )  ·  ( 3  +  1 ) )  =  ( ( ! ‘ 3 )  ·  ( 2 ↑ 2 ) ) | 
						
							| 101 | 94 97 100 | 3eqtri | ⊢ ( ! ‘ 4 )  =  ( ( ! ‘ 3 )  ·  ( 2 ↑ 2 ) ) | 
						
							| 102 | 101 | oveq1i | ⊢ ( ( ! ‘ 4 )  ·  ( 2 ↑ 2 ) )  =  ( ( ( ! ‘ 3 )  ·  ( 2 ↑ 2 ) )  ·  ( 2 ↑ 2 ) ) | 
						
							| 103 | 98 | oveq2i | ⊢ ( ( ! ‘ 4 )  ·  ( 2 ↑ 2 ) )  =  ( ( ! ‘ 4 )  ·  4 ) | 
						
							| 104 |  | fac3 | ⊢ ( ! ‘ 3 )  =  6 | 
						
							| 105 |  | 6cn | ⊢ 6  ∈  ℂ | 
						
							| 106 | 104 105 | eqeltri | ⊢ ( ! ‘ 3 )  ∈  ℂ | 
						
							| 107 | 17 | recni | ⊢ 4  ∈  ℂ | 
						
							| 108 | 98 107 | eqeltri | ⊢ ( 2 ↑ 2 )  ∈  ℂ | 
						
							| 109 | 106 108 108 | mulassi | ⊢ ( ( ( ! ‘ 3 )  ·  ( 2 ↑ 2 ) )  ·  ( 2 ↑ 2 ) )  =  ( ( ! ‘ 3 )  ·  ( ( 2 ↑ 2 )  ·  ( 2 ↑ 2 ) ) ) | 
						
							| 110 | 102 103 109 | 3eqtr3i | ⊢ ( ( ! ‘ 4 )  ·  4 )  =  ( ( ! ‘ 3 )  ·  ( ( 2 ↑ 2 )  ·  ( 2 ↑ 2 ) ) ) | 
						
							| 111 |  | 2p2e4 | ⊢ ( 2  +  2 )  =  4 | 
						
							| 112 | 111 | oveq2i | ⊢ ( 2 ↑ ( 2  +  2 ) )  =  ( 2 ↑ 4 ) | 
						
							| 113 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 114 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 115 |  | expadd | ⊢ ( ( 2  ∈  ℂ  ∧  2  ∈  ℕ0  ∧  2  ∈  ℕ0 )  →  ( 2 ↑ ( 2  +  2 ) )  =  ( ( 2 ↑ 2 )  ·  ( 2 ↑ 2 ) ) ) | 
						
							| 116 | 113 114 114 115 | mp3an | ⊢ ( 2 ↑ ( 2  +  2 ) )  =  ( ( 2 ↑ 2 )  ·  ( 2 ↑ 2 ) ) | 
						
							| 117 | 112 116 | eqtr3i | ⊢ ( 2 ↑ 4 )  =  ( ( 2 ↑ 2 )  ·  ( 2 ↑ 2 ) ) | 
						
							| 118 | 117 | oveq2i | ⊢ ( ( ! ‘ 3 )  ·  ( 2 ↑ 4 ) )  =  ( ( ! ‘ 3 )  ·  ( ( 2 ↑ 2 )  ·  ( 2 ↑ 2 ) ) ) | 
						
							| 119 | 104 | oveq1i | ⊢ ( ( ! ‘ 3 )  ·  ( 2 ↑ 4 ) )  =  ( 6  ·  ( 2 ↑ 4 ) ) | 
						
							| 120 | 110 118 119 | 3eqtr2ri | ⊢ ( 6  ·  ( 2 ↑ 4 ) )  =  ( ( ! ‘ 4 )  ·  4 ) | 
						
							| 121 | 92 120 | oveq12i | ⊢ ( 5  /  ( 6  ·  ( 2 ↑ 4 ) ) )  =  ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) ) | 
						
							| 122 | 81 | nncni | ⊢ ( 2 ↑ 4 )  ∈  ℂ | 
						
							| 123 | 122 | mullidi | ⊢ ( 1  ·  ( 2 ↑ 4 ) )  =  ( 2 ↑ 4 ) | 
						
							| 124 | 123 | oveq1i | ⊢ ( ( 1  ·  ( 2 ↑ 4 ) )  /  ( 6  ·  ( 2 ↑ 4 ) ) )  =  ( ( 2 ↑ 4 )  /  ( 6  ·  ( 2 ↑ 4 ) ) ) | 
						
							| 125 | 81 | nnne0i | ⊢ ( 2 ↑ 4 )  ≠  0 | 
						
							| 126 | 122 125 | dividi | ⊢ ( ( 2 ↑ 4 )  /  ( 2 ↑ 4 ) )  =  1 | 
						
							| 127 | 126 | oveq2i | ⊢ ( ( 1  /  6 )  ·  ( ( 2 ↑ 4 )  /  ( 2 ↑ 4 ) ) )  =  ( ( 1  /  6 )  ·  1 ) | 
						
							| 128 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 129 | 85 87 | gt0ne0ii | ⊢ 6  ≠  0 | 
						
							| 130 | 128 105 122 122 129 125 | divmuldivi | ⊢ ( ( 1  /  6 )  ·  ( ( 2 ↑ 4 )  /  ( 2 ↑ 4 ) ) )  =  ( ( 1  ·  ( 2 ↑ 4 ) )  /  ( 6  ·  ( 2 ↑ 4 ) ) ) | 
						
							| 131 | 85 129 | rereccli | ⊢ ( 1  /  6 )  ∈  ℝ | 
						
							| 132 | 131 | recni | ⊢ ( 1  /  6 )  ∈  ℂ | 
						
							| 133 | 132 | mulridi | ⊢ ( ( 1  /  6 )  ·  1 )  =  ( 1  /  6 ) | 
						
							| 134 | 127 130 133 | 3eqtr3i | ⊢ ( ( 1  ·  ( 2 ↑ 4 ) )  /  ( 6  ·  ( 2 ↑ 4 ) ) )  =  ( 1  /  6 ) | 
						
							| 135 | 124 134 | eqtr3i | ⊢ ( ( 2 ↑ 4 )  /  ( 6  ·  ( 2 ↑ 4 ) ) )  =  ( 1  /  6 ) | 
						
							| 136 | 91 121 135 | 3brtr3i | ⊢ ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) )  <  ( 1  /  6 ) | 
						
							| 137 |  | rpexpcl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  4  ∈  ℤ )  →  ( 𝐴 ↑ 4 )  ∈  ℝ+ ) | 
						
							| 138 | 38 69 137 | sylancl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 4 )  ∈  ℝ+ ) | 
						
							| 139 |  | elrp | ⊢ ( ( 𝐴 ↑ 4 )  ∈  ℝ+  ↔  ( ( 𝐴 ↑ 4 )  ∈  ℝ  ∧  0  <  ( 𝐴 ↑ 4 ) ) ) | 
						
							| 140 |  | ltmul2 | ⊢ ( ( ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) )  ∈  ℝ  ∧  ( 1  /  6 )  ∈  ℝ  ∧  ( ( 𝐴 ↑ 4 )  ∈  ℝ  ∧  0  <  ( 𝐴 ↑ 4 ) ) )  →  ( ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) )  <  ( 1  /  6 )  ↔  ( ( 𝐴 ↑ 4 )  ·  ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) ) )  <  ( ( 𝐴 ↑ 4 )  ·  ( 1  /  6 ) ) ) ) | 
						
							| 141 | 24 131 140 | mp3an12 | ⊢ ( ( ( 𝐴 ↑ 4 )  ∈  ℝ  ∧  0  <  ( 𝐴 ↑ 4 ) )  →  ( ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) )  <  ( 1  /  6 )  ↔  ( ( 𝐴 ↑ 4 )  ·  ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) ) )  <  ( ( 𝐴 ↑ 4 )  ·  ( 1  /  6 ) ) ) ) | 
						
							| 142 | 139 141 | sylbi | ⊢ ( ( 𝐴 ↑ 4 )  ∈  ℝ+  →  ( ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) )  <  ( 1  /  6 )  ↔  ( ( 𝐴 ↑ 4 )  ·  ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) ) )  <  ( ( 𝐴 ↑ 4 )  ·  ( 1  /  6 ) ) ) ) | 
						
							| 143 | 138 142 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) )  <  ( 1  /  6 )  ↔  ( ( 𝐴 ↑ 4 )  ·  ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) ) )  <  ( ( 𝐴 ↑ 4 )  ·  ( 1  /  6 ) ) ) ) | 
						
							| 144 | 136 143 | mpbii | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 4 )  ·  ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) ) )  <  ( ( 𝐴 ↑ 4 )  ·  ( 1  /  6 ) ) ) | 
						
							| 145 | 16 | recnd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( 𝐴 ↑ 4 )  ∈  ℂ ) | 
						
							| 146 |  | divrec | ⊢ ( ( ( 𝐴 ↑ 4 )  ∈  ℂ  ∧  6  ∈  ℂ  ∧  6  ≠  0 )  →  ( ( 𝐴 ↑ 4 )  /  6 )  =  ( ( 𝐴 ↑ 4 )  ·  ( 1  /  6 ) ) ) | 
						
							| 147 | 105 129 146 | mp3an23 | ⊢ ( ( 𝐴 ↑ 4 )  ∈  ℂ  →  ( ( 𝐴 ↑ 4 )  /  6 )  =  ( ( 𝐴 ↑ 4 )  ·  ( 1  /  6 ) ) ) | 
						
							| 148 | 145 147 | syl | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 4 )  /  6 )  =  ( ( 𝐴 ↑ 4 )  ·  ( 1  /  6 ) ) ) | 
						
							| 149 | 144 148 | breqtrrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( ( 𝐴 ↑ 4 )  ·  ( ( 4  +  1 )  /  ( ( ! ‘ 4 )  ·  4 ) ) )  <  ( ( 𝐴 ↑ 4 )  /  6 ) ) | 
						
							| 150 | 14 26 29 52 149 | lelttrd | ⊢ ( 𝐴  ∈  ( 0 (,] 1 )  →  ( abs ‘ Σ 𝑘  ∈  ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) )  <  ( ( 𝐴 ↑ 4 )  /  6 ) ) |