| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eftval.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
| 2 |
|
simpr |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
| 3 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 4 |
2 3
|
eleqtrrdi |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) → 𝑘 ∈ ℕ0 ) |
| 5 |
|
elnn0 |
⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) |
| 6 |
4 5
|
sylib |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) → ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) |
| 7 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ0 ) |
| 9 |
1
|
eftval |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 𝑘 ) = ( 0 ↑ 𝑘 ) ) |
| 12 |
|
0exp |
⊢ ( 𝑘 ∈ ℕ → ( 0 ↑ 𝑘 ) = 0 ) |
| 13 |
11 12
|
sylan9eq |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) = 0 ) |
| 14 |
13
|
oveq1d |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( 0 / ( ! ‘ 𝑘 ) ) ) |
| 15 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 16 |
|
nncn |
⊢ ( ( ! ‘ 𝑘 ) ∈ ℕ → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 17 |
|
nnne0 |
⊢ ( ( ! ‘ 𝑘 ) ∈ ℕ → ( ! ‘ 𝑘 ) ≠ 0 ) |
| 18 |
16 17
|
div0d |
⊢ ( ( ! ‘ 𝑘 ) ∈ ℕ → ( 0 / ( ! ‘ 𝑘 ) ) = 0 ) |
| 19 |
8 15 18
|
3syl |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → ( 0 / ( ! ‘ 𝑘 ) ) = 0 ) |
| 20 |
10 14 19
|
3eqtrd |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = 0 ) |
| 21 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
| 22 |
|
velsn |
⊢ ( 𝑘 ∈ { 0 } ↔ 𝑘 = 0 ) |
| 23 |
22
|
necon3bbii |
⊢ ( ¬ 𝑘 ∈ { 0 } ↔ 𝑘 ≠ 0 ) |
| 24 |
21 23
|
sylibr |
⊢ ( 𝑘 ∈ ℕ → ¬ 𝑘 ∈ { 0 } ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → ¬ 𝑘 ∈ { 0 } ) |
| 26 |
25
|
iffalsed |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → if ( 𝑘 ∈ { 0 } , 1 , 0 ) = 0 ) |
| 27 |
20 26
|
eqtr4d |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ { 0 } , 1 , 0 ) ) |
| 28 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 0 ) ) |
| 29 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 0 ) = ( 0 ↑ 0 ) ) |
| 30 |
|
0exp0e1 |
⊢ ( 0 ↑ 0 ) = 1 |
| 31 |
29 30
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( 𝐴 ↑ 0 ) = 1 ) |
| 32 |
31
|
oveq1d |
⊢ ( 𝐴 = 0 → ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) = ( 1 / ( ! ‘ 0 ) ) ) |
| 33 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 34 |
1
|
eftval |
⊢ ( 0 ∈ ℕ0 → ( 𝐹 ‘ 0 ) = ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) ) |
| 35 |
33 34
|
ax-mp |
⊢ ( 𝐹 ‘ 0 ) = ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) |
| 36 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
| 37 |
36
|
oveq2i |
⊢ ( 1 / ( ! ‘ 0 ) ) = ( 1 / 1 ) |
| 38 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 39 |
37 38
|
eqtr2i |
⊢ 1 = ( 1 / ( ! ‘ 0 ) ) |
| 40 |
32 35 39
|
3eqtr4g |
⊢ ( 𝐴 = 0 → ( 𝐹 ‘ 0 ) = 1 ) |
| 41 |
28 40
|
sylan9eqr |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 = 0 ) → ( 𝐹 ‘ 𝑘 ) = 1 ) |
| 42 |
|
simpr |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 = 0 ) → 𝑘 = 0 ) |
| 43 |
42 22
|
sylibr |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 = 0 ) → 𝑘 ∈ { 0 } ) |
| 44 |
43
|
iftrued |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 = 0 ) → if ( 𝑘 ∈ { 0 } , 1 , 0 ) = 1 ) |
| 45 |
41 44
|
eqtr4d |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 = 0 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ { 0 } , 1 , 0 ) ) |
| 46 |
27 45
|
jaodan |
⊢ ( ( 𝐴 = 0 ∧ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ { 0 } , 1 , 0 ) ) |
| 47 |
6 46
|
syldan |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ { 0 } , 1 , 0 ) ) |
| 48 |
33 3
|
eleqtri |
⊢ 0 ∈ ( ℤ≥ ‘ 0 ) |
| 49 |
48
|
a1i |
⊢ ( 𝐴 = 0 → 0 ∈ ( ℤ≥ ‘ 0 ) ) |
| 50 |
|
1cnd |
⊢ ( ( 𝐴 = 0 ∧ 𝑘 ∈ { 0 } ) → 1 ∈ ℂ ) |
| 51 |
|
fz0sn |
⊢ ( 0 ... 0 ) = { 0 } |
| 52 |
51
|
eqimss2i |
⊢ { 0 } ⊆ ( 0 ... 0 ) |
| 53 |
52
|
a1i |
⊢ ( 𝐴 = 0 → { 0 } ⊆ ( 0 ... 0 ) ) |
| 54 |
47 49 50 53
|
fsumcvg2 |
⊢ ( 𝐴 = 0 → seq 0 ( + , 𝐹 ) ⇝ ( seq 0 ( + , 𝐹 ) ‘ 0 ) ) |
| 55 |
|
0z |
⊢ 0 ∈ ℤ |
| 56 |
55 40
|
seq1i |
⊢ ( 𝐴 = 0 → ( seq 0 ( + , 𝐹 ) ‘ 0 ) = 1 ) |
| 57 |
54 56
|
breqtrd |
⊢ ( 𝐴 = 0 → seq 0 ( + , 𝐹 ) ⇝ 1 ) |