Step |
Hyp |
Ref |
Expression |
1 |
|
2cn |
⊢ 2 ∈ ℂ |
2 |
|
picn |
⊢ π ∈ ℂ |
3 |
1 2
|
mulcli |
⊢ ( 2 · π ) ∈ ℂ |
4 |
|
efival |
⊢ ( ( 2 · π ) ∈ ℂ → ( exp ‘ ( i · ( 2 · π ) ) ) = ( ( cos ‘ ( 2 · π ) ) + ( i · ( sin ‘ ( 2 · π ) ) ) ) ) |
5 |
3 4
|
ax-mp |
⊢ ( exp ‘ ( i · ( 2 · π ) ) ) = ( ( cos ‘ ( 2 · π ) ) + ( i · ( sin ‘ ( 2 · π ) ) ) ) |
6 |
|
cos2pi |
⊢ ( cos ‘ ( 2 · π ) ) = 1 |
7 |
|
sin2pi |
⊢ ( sin ‘ ( 2 · π ) ) = 0 |
8 |
7
|
oveq2i |
⊢ ( i · ( sin ‘ ( 2 · π ) ) ) = ( i · 0 ) |
9 |
|
it0e0 |
⊢ ( i · 0 ) = 0 |
10 |
8 9
|
eqtri |
⊢ ( i · ( sin ‘ ( 2 · π ) ) ) = 0 |
11 |
6 10
|
oveq12i |
⊢ ( ( cos ‘ ( 2 · π ) ) + ( i · ( sin ‘ ( 2 · π ) ) ) ) = ( 1 + 0 ) |
12 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
13 |
11 12
|
eqtri |
⊢ ( ( cos ‘ ( 2 · π ) ) + ( i · ( sin ‘ ( 2 · π ) ) ) ) = 1 |
14 |
5 13
|
eqtri |
⊢ ( exp ‘ ( i · ( 2 · π ) ) ) = 1 |