| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 2 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 3 | 1 2 | mulcli | ⊢ ( 2  ·  π )  ∈  ℂ | 
						
							| 4 |  | efival | ⊢ ( ( 2  ·  π )  ∈  ℂ  →  ( exp ‘ ( i  ·  ( 2  ·  π ) ) )  =  ( ( cos ‘ ( 2  ·  π ) )  +  ( i  ·  ( sin ‘ ( 2  ·  π ) ) ) ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( exp ‘ ( i  ·  ( 2  ·  π ) ) )  =  ( ( cos ‘ ( 2  ·  π ) )  +  ( i  ·  ( sin ‘ ( 2  ·  π ) ) ) ) | 
						
							| 6 |  | cos2pi | ⊢ ( cos ‘ ( 2  ·  π ) )  =  1 | 
						
							| 7 |  | sin2pi | ⊢ ( sin ‘ ( 2  ·  π ) )  =  0 | 
						
							| 8 | 7 | oveq2i | ⊢ ( i  ·  ( sin ‘ ( 2  ·  π ) ) )  =  ( i  ·  0 ) | 
						
							| 9 |  | it0e0 | ⊢ ( i  ·  0 )  =  0 | 
						
							| 10 | 8 9 | eqtri | ⊢ ( i  ·  ( sin ‘ ( 2  ·  π ) ) )  =  0 | 
						
							| 11 | 6 10 | oveq12i | ⊢ ( ( cos ‘ ( 2  ·  π ) )  +  ( i  ·  ( sin ‘ ( 2  ·  π ) ) ) )  =  ( 1  +  0 ) | 
						
							| 12 |  | 1p0e1 | ⊢ ( 1  +  0 )  =  1 | 
						
							| 13 | 11 12 | eqtri | ⊢ ( ( cos ‘ ( 2  ·  π ) )  +  ( i  ·  ( sin ‘ ( 2  ·  π ) ) ) )  =  1 | 
						
							| 14 | 5 13 | eqtri | ⊢ ( exp ‘ ( i  ·  ( 2  ·  π ) ) )  =  1 |