Metamath Proof Explorer


Theorem ef2pi

Description: The exponential of 2pi i is 1 . (Contributed by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion ef2pi ( exp ‘ ( i · ( 2 · π ) ) ) = 1

Proof

Step Hyp Ref Expression
1 2cn 2 ∈ ℂ
2 picn π ∈ ℂ
3 1 2 mulcli ( 2 · π ) ∈ ℂ
4 efival ( ( 2 · π ) ∈ ℂ → ( exp ‘ ( i · ( 2 · π ) ) ) = ( ( cos ‘ ( 2 · π ) ) + ( i · ( sin ‘ ( 2 · π ) ) ) ) )
5 3 4 ax-mp ( exp ‘ ( i · ( 2 · π ) ) ) = ( ( cos ‘ ( 2 · π ) ) + ( i · ( sin ‘ ( 2 · π ) ) ) )
6 cos2pi ( cos ‘ ( 2 · π ) ) = 1
7 sin2pi ( sin ‘ ( 2 · π ) ) = 0
8 7 oveq2i ( i · ( sin ‘ ( 2 · π ) ) ) = ( i · 0 )
9 it0e0 ( i · 0 ) = 0
10 8 9 eqtri ( i · ( sin ‘ ( 2 · π ) ) ) = 0
11 6 10 oveq12i ( ( cos ‘ ( 2 · π ) ) + ( i · ( sin ‘ ( 2 · π ) ) ) ) = ( 1 + 0 )
12 1p0e1 ( 1 + 0 ) = 1
13 11 12 eqtri ( ( cos ‘ ( 2 · π ) ) + ( i · ( sin ‘ ( 2 · π ) ) ) ) = 1
14 5 13 eqtri ( exp ‘ ( i · ( 2 · π ) ) ) = 1