Step |
Hyp |
Ref |
Expression |
1 |
|
ef4p.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
2 |
|
df-4 |
⊢ 4 = ( 3 + 1 ) |
3 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
4 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
5 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
6 |
|
addcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 + 𝐴 ) ∈ ℂ ) |
7 |
5 6
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( 1 + 𝐴 ) ∈ ℂ ) |
8 |
|
sqcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
9 |
8
|
halfcld |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℂ ) |
10 |
7 9
|
addcld |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) ∈ ℂ ) |
11 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
12 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
13 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
14 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
15 |
5
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℂ ) |
16 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
17 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
18 |
|
0cnd |
⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℂ ) |
19 |
1
|
efval2 |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) ) |
20 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
21 |
20
|
sumeq1i |
⊢ Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( 𝐹 ‘ 𝑘 ) |
22 |
19 21
|
eqtr2di |
⊢ ( 𝐴 ∈ ℂ → Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( 𝐹 ‘ 𝑘 ) = ( exp ‘ 𝐴 ) ) |
23 |
22
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 0 + Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( 𝐹 ‘ 𝑘 ) ) = ( 0 + ( exp ‘ 𝐴 ) ) ) |
24 |
|
efcl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) |
25 |
24
|
addid2d |
⊢ ( 𝐴 ∈ ℂ → ( 0 + ( exp ‘ 𝐴 ) ) = ( exp ‘ 𝐴 ) ) |
26 |
23 25
|
eqtr2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( 0 + Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( 𝐹 ‘ 𝑘 ) ) ) |
27 |
|
eft0val |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) = 1 ) |
28 |
27
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 0 + ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) ) = ( 0 + 1 ) ) |
29 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
30 |
28 29
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( 0 + ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) ) = 1 ) |
31 |
1 16 17 4 18 26 30
|
efsep |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( 1 + Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑘 ) ) ) |
32 |
|
exp1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) |
33 |
|
fac1 |
⊢ ( ! ‘ 1 ) = 1 |
34 |
33
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ! ‘ 1 ) = 1 ) |
35 |
32 34
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) = ( 𝐴 / 1 ) ) |
36 |
|
div1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 1 ) = 𝐴 ) |
37 |
35 36
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) = 𝐴 ) |
38 |
37
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 1 + ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) ) = ( 1 + 𝐴 ) ) |
39 |
1 13 14 4 15 31 38
|
efsep |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( ( 1 + 𝐴 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( 𝐹 ‘ 𝑘 ) ) ) |
40 |
|
fac2 |
⊢ ( ! ‘ 2 ) = 2 |
41 |
40
|
oveq2i |
⊢ ( ( 𝐴 ↑ 2 ) / ( ! ‘ 2 ) ) = ( ( 𝐴 ↑ 2 ) / 2 ) |
42 |
41
|
oveq2i |
⊢ ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / ( ! ‘ 2 ) ) ) = ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) |
43 |
42
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / ( ! ‘ 2 ) ) ) = ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) ) |
44 |
1 11 12 4 7 39 43
|
efsep |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ( 𝐹 ‘ 𝑘 ) ) ) |
45 |
|
fac3 |
⊢ ( ! ‘ 3 ) = 6 |
46 |
45
|
oveq2i |
⊢ ( ( 𝐴 ↑ 3 ) / ( ! ‘ 3 ) ) = ( ( 𝐴 ↑ 3 ) / 6 ) |
47 |
46
|
oveq2i |
⊢ ( ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / ( ! ‘ 3 ) ) ) = ( ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) |
48 |
47
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / ( ! ‘ 3 ) ) ) = ( ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
49 |
1 2 3 4 10 44 48
|
efsep |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( ( ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) |