| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efabl.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) ) |
| 2 |
|
efabl.2 |
⊢ 𝐺 = ( ( mulGrp ‘ ℂfld ) ↾s ran 𝐹 ) |
| 3 |
|
efabl.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 4 |
|
efabl.4 |
⊢ ( 𝜑 → 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) |
| 5 |
|
eqid |
⊢ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) = ( Base ‘ ( ℂfld ↾s 𝑋 ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 7 |
|
eqid |
⊢ ( +g ‘ ( ℂfld ↾s 𝑋 ) ) = ( +g ‘ ( ℂfld ↾s 𝑋 ) ) |
| 8 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 9 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝜑 ) |
| 10 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) |
| 11 |
|
eqid |
⊢ ( ℂfld ↾s 𝑋 ) = ( ℂfld ↾s 𝑋 ) |
| 12 |
11
|
subgbas |
⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → 𝑋 = ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) |
| 13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝑋 = ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) |
| 14 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝑋 = ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) |
| 15 |
10 14
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝑥 ∈ 𝑋 ) |
| 16 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) |
| 17 |
16 14
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝑦 ∈ 𝑋 ) |
| 18 |
3 4
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ) |
| 19 |
1
|
efgh |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 20 |
18 19
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 22 |
11 21
|
ressplusg |
⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → + = ( +g ‘ ( ℂfld ↾s 𝑋 ) ) ) |
| 23 |
4 22
|
syl |
⊢ ( 𝜑 → + = ( +g ‘ ( ℂfld ↾s 𝑋 ) ) ) |
| 24 |
23
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → + = ( +g ‘ ( ℂfld ↾s 𝑋 ) ) ) |
| 25 |
24
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ ( ℂfld ↾s 𝑋 ) ) 𝑦 ) ) |
| 26 |
25
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( ℂfld ↾s 𝑋 ) ) 𝑦 ) ) ) |
| 27 |
|
mptexg |
⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → ( 𝑥 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) ) ∈ V ) |
| 28 |
1 27
|
eqeltrid |
⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → 𝐹 ∈ V ) |
| 29 |
|
rnexg |
⊢ ( 𝐹 ∈ V → ran 𝐹 ∈ V ) |
| 30 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 31 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 32 |
30 31
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 33 |
2 32
|
ressplusg |
⊢ ( ran 𝐹 ∈ V → · = ( +g ‘ 𝐺 ) ) |
| 34 |
4 28 29 33
|
4syl |
⊢ ( 𝜑 → · = ( +g ‘ 𝐺 ) ) |
| 35 |
34
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → · = ( +g ‘ 𝐺 ) ) |
| 36 |
35
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 37 |
20 26 36
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( ℂfld ↾s 𝑋 ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 38 |
9 15 17 37
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( ℂfld ↾s 𝑋 ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 39 |
|
fvex |
⊢ ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ V |
| 40 |
39 1
|
fnmpti |
⊢ 𝐹 Fn 𝑋 |
| 41 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
| 42 |
40 41
|
mpbi |
⊢ 𝐹 : 𝑋 –onto→ ran 𝐹 |
| 43 |
|
eqidd |
⊢ ( 𝜑 → 𝐹 = 𝐹 ) |
| 44 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
| 45 |
44
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → exp : ℂ ⟶ ℂ ) |
| 46 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 47 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 48 |
47
|
subgss |
⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → 𝑋 ⊆ ℂ ) |
| 49 |
4 48
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
| 50 |
49
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ℂ ) |
| 51 |
46 50
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 52 |
45 51
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 53 |
52
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 54 |
1
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ → ran 𝐹 ⊆ ℂ ) |
| 55 |
30 47
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 56 |
2 55
|
ressbas2 |
⊢ ( ran 𝐹 ⊆ ℂ → ran 𝐹 = ( Base ‘ 𝐺 ) ) |
| 57 |
53 54 56
|
3syl |
⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐺 ) ) |
| 58 |
43 13 57
|
foeq123d |
⊢ ( 𝜑 → ( 𝐹 : 𝑋 –onto→ ran 𝐹 ↔ 𝐹 : ( Base ‘ ( ℂfld ↾s 𝑋 ) ) –onto→ ( Base ‘ 𝐺 ) ) ) |
| 59 |
42 58
|
mpbii |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ ( ℂfld ↾s 𝑋 ) ) –onto→ ( Base ‘ 𝐺 ) ) |
| 60 |
|
cnring |
⊢ ℂfld ∈ Ring |
| 61 |
|
ringabl |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Abel ) |
| 62 |
60 61
|
ax-mp |
⊢ ℂfld ∈ Abel |
| 63 |
11
|
subgabl |
⊢ ( ( ℂfld ∈ Abel ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) → ( ℂfld ↾s 𝑋 ) ∈ Abel ) |
| 64 |
62 4 63
|
sylancr |
⊢ ( 𝜑 → ( ℂfld ↾s 𝑋 ) ∈ Abel ) |
| 65 |
5 6 7 8 38 59 64
|
ghmabl |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |