Step |
Hyp |
Ref |
Expression |
1 |
|
efabl.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) ) |
2 |
|
efabl.2 |
⊢ 𝐺 = ( ( mulGrp ‘ ℂfld ) ↾s ran 𝐹 ) |
3 |
|
efabl.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
4 |
|
efabl.4 |
⊢ ( 𝜑 → 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) |
5 |
|
eqid |
⊢ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) = ( Base ‘ ( ℂfld ↾s 𝑋 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
7 |
|
eqid |
⊢ ( +g ‘ ( ℂfld ↾s 𝑋 ) ) = ( +g ‘ ( ℂfld ↾s 𝑋 ) ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
9 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝜑 ) |
10 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) |
11 |
|
eqid |
⊢ ( ℂfld ↾s 𝑋 ) = ( ℂfld ↾s 𝑋 ) |
12 |
11
|
subgbas |
⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → 𝑋 = ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) |
13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝑋 = ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝑋 = ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) |
15 |
10 14
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝑥 ∈ 𝑋 ) |
16 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) |
17 |
16 14
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝑦 ∈ 𝑋 ) |
18 |
3 4
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ) |
19 |
1
|
efgh |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
20 |
18 19
|
syl3an1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
21 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
22 |
11 21
|
ressplusg |
⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → + = ( +g ‘ ( ℂfld ↾s 𝑋 ) ) ) |
23 |
4 22
|
syl |
⊢ ( 𝜑 → + = ( +g ‘ ( ℂfld ↾s 𝑋 ) ) ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → + = ( +g ‘ ( ℂfld ↾s 𝑋 ) ) ) |
25 |
24
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ ( ℂfld ↾s 𝑋 ) ) 𝑦 ) ) |
26 |
25
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( ℂfld ↾s 𝑋 ) ) 𝑦 ) ) ) |
27 |
|
mptexg |
⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → ( 𝑥 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) ) ∈ V ) |
28 |
1 27
|
eqeltrid |
⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → 𝐹 ∈ V ) |
29 |
|
rnexg |
⊢ ( 𝐹 ∈ V → ran 𝐹 ∈ V ) |
30 |
4 28 29
|
3syl |
⊢ ( 𝜑 → ran 𝐹 ∈ V ) |
31 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
32 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
33 |
31 32
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
34 |
2 33
|
ressplusg |
⊢ ( ran 𝐹 ∈ V → · = ( +g ‘ 𝐺 ) ) |
35 |
30 34
|
syl |
⊢ ( 𝜑 → · = ( +g ‘ 𝐺 ) ) |
36 |
35
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → · = ( +g ‘ 𝐺 ) ) |
37 |
36
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) |
38 |
20 26 37
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( ℂfld ↾s 𝑋 ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) |
39 |
9 15 17 38
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( ℂfld ↾s 𝑋 ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) |
40 |
|
fvex |
⊢ ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ V |
41 |
40 1
|
fnmpti |
⊢ 𝐹 Fn 𝑋 |
42 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 –onto→ ran 𝐹 ) |
43 |
41 42
|
mpbi |
⊢ 𝐹 : 𝑋 –onto→ ran 𝐹 |
44 |
|
eqidd |
⊢ ( 𝜑 → 𝐹 = 𝐹 ) |
45 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
46 |
45
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → exp : ℂ ⟶ ℂ ) |
47 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
48 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
49 |
48
|
subgss |
⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → 𝑋 ⊆ ℂ ) |
50 |
4 49
|
syl |
⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
51 |
50
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ℂ ) |
52 |
47 51
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
53 |
46 52
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
54 |
53
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
55 |
1
|
rnmptss |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ → ran 𝐹 ⊆ ℂ ) |
56 |
31 48
|
mgpbas |
⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
57 |
2 56
|
ressbas2 |
⊢ ( ran 𝐹 ⊆ ℂ → ran 𝐹 = ( Base ‘ 𝐺 ) ) |
58 |
54 55 57
|
3syl |
⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐺 ) ) |
59 |
44 13 58
|
foeq123d |
⊢ ( 𝜑 → ( 𝐹 : 𝑋 –onto→ ran 𝐹 ↔ 𝐹 : ( Base ‘ ( ℂfld ↾s 𝑋 ) ) –onto→ ( Base ‘ 𝐺 ) ) ) |
60 |
43 59
|
mpbii |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ ( ℂfld ↾s 𝑋 ) ) –onto→ ( Base ‘ 𝐺 ) ) |
61 |
|
cnring |
⊢ ℂfld ∈ Ring |
62 |
|
ringabl |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Abel ) |
63 |
61 62
|
ax-mp |
⊢ ℂfld ∈ Abel |
64 |
11
|
subgabl |
⊢ ( ( ℂfld ∈ Abel ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) → ( ℂfld ↾s 𝑋 ) ∈ Abel ) |
65 |
63 4 64
|
sylancr |
⊢ ( 𝜑 → ( ℂfld ↾s 𝑋 ) ∈ Abel ) |
66 |
5 6 7 8 39 60 65
|
ghmabl |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |