Description: Sum of exponents law for exponential function. (Contributed by NM, 10-Jan-2006) (Proof shortened by Mario Carneiro, 29-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | efadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( 𝐴 + 𝐵 ) ) = ( ( exp ‘ 𝐴 ) · ( exp ‘ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
2 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐵 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐵 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
3 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐴 + 𝐵 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐴 + 𝐵 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
4 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
5 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
6 | 1 2 3 4 5 | efaddlem | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( 𝐴 + 𝐵 ) ) = ( ( exp ‘ 𝐴 ) · ( exp ‘ 𝐵 ) ) ) |