Description: Sum of exponents law for exponential function. (Contributed by NM, 10-Jan-2006) (Proof shortened by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( 𝐴 + 𝐵 ) ) = ( ( exp ‘ 𝐴 ) · ( exp ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 2 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐵 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐵 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 3 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐴 + 𝐵 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐴 + 𝐵 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 4 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 5 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 6 | 1 2 3 4 5 | efaddlem | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( 𝐴 + 𝐵 ) ) = ( ( exp ‘ 𝐴 ) · ( exp ‘ 𝐵 ) ) ) |