| Step |
Hyp |
Ref |
Expression |
| 1 |
|
efadd.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
| 2 |
|
efadd.2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐵 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
| 3 |
|
efadd.3 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐴 + 𝐵 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
| 4 |
|
efadd.4 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 5 |
|
efadd.5 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 6 |
4 5
|
addcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 7 |
3
|
efcvg |
⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → seq 0 ( + , 𝐻 ) ⇝ ( exp ‘ ( 𝐴 + 𝐵 ) ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( exp ‘ ( 𝐴 + 𝐵 ) ) ) |
| 9 |
1
|
eftval |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝐹 ‘ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 11 |
|
absexp |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 𝑗 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑗 ) ) |
| 12 |
4 11
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 𝑗 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑗 ) ) |
| 13 |
|
faccl |
⊢ ( 𝑗 ∈ ℕ0 → ( ! ‘ 𝑗 ) ∈ ℕ ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ 𝑗 ) ∈ ℕ ) |
| 15 |
|
nnre |
⊢ ( ( ! ‘ 𝑗 ) ∈ ℕ → ( ! ‘ 𝑗 ) ∈ ℝ ) |
| 16 |
|
nnnn0 |
⊢ ( ( ! ‘ 𝑗 ) ∈ ℕ → ( ! ‘ 𝑗 ) ∈ ℕ0 ) |
| 17 |
16
|
nn0ge0d |
⊢ ( ( ! ‘ 𝑗 ) ∈ ℕ → 0 ≤ ( ! ‘ 𝑗 ) ) |
| 18 |
15 17
|
absidd |
⊢ ( ( ! ‘ 𝑗 ) ∈ ℕ → ( abs ‘ ( ! ‘ 𝑗 ) ) = ( ! ‘ 𝑗 ) ) |
| 19 |
14 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ ( ! ‘ 𝑗 ) ) = ( ! ‘ 𝑗 ) ) |
| 20 |
12 19
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ ( 𝐴 ↑ 𝑗 ) ) / ( abs ‘ ( ! ‘ 𝑗 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 21 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
| 22 |
4 21
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
| 23 |
14
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ 𝑗 ) ∈ ℂ ) |
| 24 |
14
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ 𝑗 ) ≠ 0 ) |
| 25 |
22 23 24
|
absdivd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) = ( ( abs ‘ ( 𝐴 ↑ 𝑗 ) ) / ( abs ‘ ( ! ‘ 𝑗 ) ) ) ) |
| 26 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
| 27 |
26
|
eftval |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 29 |
20 25 28
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( abs ‘ ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) ) |
| 30 |
|
eftcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ∈ ℂ ) |
| 31 |
4 30
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ∈ ℂ ) |
| 32 |
2
|
eftval |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 34 |
|
eftcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 35 |
5 34
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 36 |
3
|
eftval |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐻 ‘ 𝑘 ) = ( ( ( 𝐴 + 𝐵 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = ( ( ( 𝐴 + 𝐵 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 38 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 39 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 40 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 41 |
|
binom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) ) |
| 42 |
38 39 40 41
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) ) |
| 43 |
42
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 + 𝐵 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) ) |
| 44 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 0 ... 𝑘 ) ∈ Fin ) |
| 45 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 47 |
46
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 48 |
|
bccl2 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑘 ) → ( 𝑘 C 𝑗 ) ∈ ℕ ) |
| 49 |
48
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 C 𝑗 ) ∈ ℕ ) |
| 50 |
49
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 C 𝑗 ) ∈ ℂ ) |
| 51 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝐴 ∈ ℂ ) |
| 52 |
|
fznn0sub |
⊢ ( 𝑗 ∈ ( 0 ... 𝑘 ) → ( 𝑘 − 𝑗 ) ∈ ℕ0 ) |
| 53 |
52
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − 𝑗 ) ∈ ℕ0 ) |
| 54 |
51 53
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) ∈ ℂ ) |
| 55 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝐵 ∈ ℂ ) |
| 56 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑘 ) → 𝑗 ∈ ℕ0 ) |
| 57 |
56
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝑗 ∈ ℕ0 ) |
| 58 |
55 57
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐵 ↑ 𝑗 ) ∈ ℂ ) |
| 59 |
54 58
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ∈ ℂ ) |
| 60 |
50 59
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) ∈ ℂ ) |
| 61 |
46
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
| 62 |
44 47 60 61
|
fsumdivc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) ) |
| 63 |
51 57
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
| 64 |
57 13
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ 𝑗 ) ∈ ℕ ) |
| 65 |
64
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ 𝑗 ) ∈ ℂ ) |
| 66 |
64
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ 𝑗 ) ≠ 0 ) |
| 67 |
63 65 66
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ∈ ℂ ) |
| 68 |
2
|
eftval |
⊢ ( ( 𝑘 − 𝑗 ) ∈ ℕ0 → ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) = ( ( 𝐵 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 69 |
53 68
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) = ( ( 𝐵 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 70 |
55 53
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐵 ↑ ( 𝑘 − 𝑗 ) ) ∈ ℂ ) |
| 71 |
|
faccl |
⊢ ( ( 𝑘 − 𝑗 ) ∈ ℕ0 → ( ! ‘ ( 𝑘 − 𝑗 ) ) ∈ ℕ ) |
| 72 |
53 71
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ ( 𝑘 − 𝑗 ) ) ∈ ℕ ) |
| 73 |
72
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ ( 𝑘 − 𝑗 ) ) ∈ ℂ ) |
| 74 |
72
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ ( 𝑘 − 𝑗 ) ) ≠ 0 ) |
| 75 |
70 73 74
|
divcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐵 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) ∈ ℂ ) |
| 76 |
69 75
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ∈ ℂ ) |
| 77 |
67 76
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ∈ ℂ ) |
| 78 |
|
oveq2 |
⊢ ( 𝑗 = ( ( 0 + 𝑘 ) − 𝑚 ) → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) |
| 79 |
|
fveq2 |
⊢ ( 𝑗 = ( ( 0 + 𝑘 ) − 𝑚 ) → ( ! ‘ 𝑗 ) = ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) |
| 80 |
78 79
|
oveq12d |
⊢ ( 𝑗 = ( ( 0 + 𝑘 ) − 𝑚 ) → ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) = ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) |
| 81 |
|
oveq2 |
⊢ ( 𝑗 = ( ( 0 + 𝑘 ) − 𝑚 ) → ( 𝑘 − 𝑗 ) = ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) |
| 82 |
81
|
fveq2d |
⊢ ( 𝑗 = ( ( 0 + 𝑘 ) − 𝑚 ) → ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) = ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) |
| 83 |
80 82
|
oveq12d |
⊢ ( 𝑗 = ( ( 0 + 𝑘 ) − 𝑚 ) → ( ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) = ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) ) |
| 84 |
77 83
|
fsumrev2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) = Σ 𝑚 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) ) |
| 85 |
2
|
eftval |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝐺 ‘ 𝑗 ) = ( ( 𝐵 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 86 |
57 85
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐺 ‘ 𝑗 ) = ( ( 𝐵 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 87 |
86
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) · ( 𝐺 ‘ 𝑗 ) ) = ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) · ( ( 𝐵 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) ) |
| 88 |
72 64
|
nnmulcld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ∈ ℕ ) |
| 89 |
88
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ∈ ℂ ) |
| 90 |
88
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ≠ 0 ) |
| 91 |
59 89 90
|
divrec2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) = ( ( 1 / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) ) |
| 92 |
54 73 58 65 74 66
|
divmuldivd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) · ( ( 𝐵 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) = ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) ) |
| 93 |
|
bcval2 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑘 ) → ( 𝑘 C 𝑗 ) = ( ( ! ‘ 𝑘 ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) ) |
| 94 |
93
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 C 𝑗 ) = ( ( ! ‘ 𝑘 ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) ) |
| 95 |
94
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝑘 C 𝑗 ) / ( ! ‘ 𝑘 ) ) = ( ( ( ! ‘ 𝑘 ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) ) |
| 96 |
47
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 97 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
| 98 |
96 89 96 90 97
|
divdiv32d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( ! ‘ 𝑘 ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = ( ( ( ! ‘ 𝑘 ) / ( ! ‘ 𝑘 ) ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) ) |
| 99 |
96 97
|
dividd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ! ‘ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 1 ) |
| 100 |
99
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( ! ‘ 𝑘 ) / ( ! ‘ 𝑘 ) ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) = ( 1 / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) ) |
| 101 |
98 100
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( ! ‘ 𝑘 ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = ( 1 / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) ) |
| 102 |
95 101
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝑘 C 𝑗 ) / ( ! ‘ 𝑘 ) ) = ( 1 / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) ) |
| 103 |
102
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝑘 C 𝑗 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) = ( ( 1 / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) ) |
| 104 |
91 92 103
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝑘 C 𝑗 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) = ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) · ( ( 𝐵 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) ) |
| 105 |
87 104
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) · ( 𝐺 ‘ 𝑗 ) ) = ( ( ( 𝑘 C 𝑗 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) ) |
| 106 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
| 107 |
106
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝑘 ∈ ℂ ) |
| 108 |
107
|
addlidd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 0 + 𝑘 ) = 𝑘 ) |
| 109 |
108
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 0 + 𝑘 ) − 𝑗 ) = ( 𝑘 − 𝑗 ) ) |
| 110 |
109
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) = ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) ) |
| 111 |
109
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) = ( ! ‘ ( 𝑘 − 𝑗 ) ) ) |
| 112 |
110 111
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) ) = ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 113 |
109
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) = ( 𝑘 − ( 𝑘 − 𝑗 ) ) ) |
| 114 |
|
nn0cn |
⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℂ ) |
| 115 |
57 114
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝑗 ∈ ℂ ) |
| 116 |
107 115
|
nncand |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − ( 𝑘 − 𝑗 ) ) = 𝑗 ) |
| 117 |
113 116
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) = 𝑗 ) |
| 118 |
117
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) ) = ( 𝐺 ‘ 𝑗 ) ) |
| 119 |
112 118
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) ) ) = ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) · ( 𝐺 ‘ 𝑗 ) ) ) |
| 120 |
50 59 96 97
|
div23d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = ( ( ( 𝑘 C 𝑗 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) ) |
| 121 |
105 119 120
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) ) ) ) |
| 122 |
121
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) ) ) ) |
| 123 |
|
oveq2 |
⊢ ( 𝑗 = 𝑚 → ( ( 0 + 𝑘 ) − 𝑗 ) = ( ( 0 + 𝑘 ) − 𝑚 ) ) |
| 124 |
123
|
oveq2d |
⊢ ( 𝑗 = 𝑚 → ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) = ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) |
| 125 |
123
|
fveq2d |
⊢ ( 𝑗 = 𝑚 → ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) = ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) |
| 126 |
124 125
|
oveq12d |
⊢ ( 𝑗 = 𝑚 → ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) ) = ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) |
| 127 |
123
|
oveq2d |
⊢ ( 𝑗 = 𝑚 → ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) = ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) |
| 128 |
127
|
fveq2d |
⊢ ( 𝑗 = 𝑚 → ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) ) = ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) |
| 129 |
126 128
|
oveq12d |
⊢ ( 𝑗 = 𝑚 → ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) ) ) = ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) ) |
| 130 |
129
|
cbvsumv |
⊢ Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) ) ) = Σ 𝑚 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) |
| 131 |
122 130
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = Σ 𝑚 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) ) |
| 132 |
84 131
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) ) |
| 133 |
62 132
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 134 |
43 133
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 + 𝐵 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 135 |
37 134
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 136 |
4
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 137 |
136
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 138 |
26
|
efcllem |
⊢ ( ( abs ‘ 𝐴 ) ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| 139 |
137 138
|
syl |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| 140 |
2
|
efcllem |
⊢ ( 𝐵 ∈ ℂ → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 141 |
5 140
|
syl |
⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 142 |
10 29 31 33 35 135 139 141
|
mertens |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( Σ 𝑗 ∈ ℕ0 ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 143 |
|
efval |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑗 ∈ ℕ0 ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 144 |
4 143
|
syl |
⊢ ( 𝜑 → ( exp ‘ 𝐴 ) = Σ 𝑗 ∈ ℕ0 ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 145 |
|
efval |
⊢ ( 𝐵 ∈ ℂ → ( exp ‘ 𝐵 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 146 |
5 145
|
syl |
⊢ ( 𝜑 → ( exp ‘ 𝐵 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 147 |
144 146
|
oveq12d |
⊢ ( 𝜑 → ( ( exp ‘ 𝐴 ) · ( exp ‘ 𝐵 ) ) = ( Σ 𝑗 ∈ ℕ0 ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 148 |
142 147
|
breqtrrd |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( ( exp ‘ 𝐴 ) · ( exp ‘ 𝐵 ) ) ) |
| 149 |
|
climuni |
⊢ ( ( seq 0 ( + , 𝐻 ) ⇝ ( exp ‘ ( 𝐴 + 𝐵 ) ) ∧ seq 0 ( + , 𝐻 ) ⇝ ( ( exp ‘ 𝐴 ) · ( exp ‘ 𝐵 ) ) ) → ( exp ‘ ( 𝐴 + 𝐵 ) ) = ( ( exp ‘ 𝐴 ) · ( exp ‘ 𝐵 ) ) ) |
| 150 |
8 148 149
|
syl2anc |
⊢ ( 𝜑 → ( exp ‘ ( 𝐴 + 𝐵 ) ) = ( ( exp ‘ 𝐴 ) · ( exp ‘ 𝐵 ) ) ) |