| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chpval | ⊢ ( 𝐴  ∈  ℝ  →  ( ψ ‘ 𝐴 )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) ) | 
						
							| 2 | 1 | fveq2d | ⊢ ( 𝐴  ∈  ℝ  →  ( exp ‘ ( ψ ‘ 𝐴 ) )  =  ( exp ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) ) ) | 
						
							| 3 |  | fzfid | ⊢ ( 𝐴  ∈  ℝ  →  ( 1 ... ( ⌊ ‘ 𝐴 ) )  ∈  Fin ) | 
						
							| 4 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 6 |  | vmacl | ⊢ ( 𝑛  ∈  ℕ  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 8 |  | efvmacl | ⊢ ( 𝑛  ∈  ℕ  →  ( exp ‘ ( Λ ‘ 𝑛 ) )  ∈  ℕ ) | 
						
							| 9 | 5 8 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) )  →  ( exp ‘ ( Λ ‘ 𝑛 ) )  ∈  ℕ ) | 
						
							| 10 | 3 7 9 | efnnfsumcl | ⊢ ( 𝐴  ∈  ℝ  →  ( exp ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) )  ∈  ℕ ) | 
						
							| 11 | 2 10 | eqeltrd | ⊢ ( 𝐴  ∈  ℝ  →  ( exp ‘ ( ψ ‘ 𝐴 ) )  ∈  ℕ ) |