Step |
Hyp |
Ref |
Expression |
1 |
|
chtcl |
⊢ ( 𝐵 ∈ ℝ → ( θ ‘ 𝐵 ) ∈ ℝ ) |
2 |
1
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐵 ) ∈ ℝ ) |
3 |
2
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐵 ) ∈ ℂ ) |
4 |
|
chtcl |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) ∈ ℝ ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐴 ) ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐴 ) ∈ ℂ ) |
7 |
|
efsub |
⊢ ( ( ( θ ‘ 𝐵 ) ∈ ℂ ∧ ( θ ‘ 𝐴 ) ∈ ℂ ) → ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) = ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ) |
8 |
3 6 7
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) = ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ) |
9 |
|
chtfl |
⊢ ( 𝐵 ∈ ℝ → ( θ ‘ ( ⌊ ‘ 𝐵 ) ) = ( θ ‘ 𝐵 ) ) |
10 |
9
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ ( ⌊ ‘ 𝐵 ) ) = ( θ ‘ 𝐵 ) ) |
11 |
|
chtfl |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ ( ⌊ ‘ 𝐴 ) ) = ( θ ‘ 𝐴 ) ) |
12 |
11
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ ( ⌊ ‘ 𝐴 ) ) = ( θ ‘ 𝐴 ) ) |
13 |
10 12
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( θ ‘ ( ⌊ ‘ 𝐵 ) ) − ( θ ‘ ( ⌊ ‘ 𝐴 ) ) ) = ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) |
14 |
|
flword2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝐴 ) ) ) |
15 |
|
chtdif |
⊢ ( ( ⌊ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝐴 ) ) → ( ( θ ‘ ( ⌊ ‘ 𝐵 ) ) − ( θ ‘ ( ⌊ ‘ 𝐴 ) ) ) = Σ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( θ ‘ ( ⌊ ‘ 𝐵 ) ) − ( θ ‘ ( ⌊ ‘ 𝐴 ) ) ) = Σ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
17 |
13 16
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) = Σ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
18 |
|
ssrab2 |
⊢ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ⊆ ℝ |
19 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
20 |
18 19
|
sstri |
⊢ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ⊆ ℂ |
21 |
20
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ⊆ ℂ ) |
22 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝑦 ) ) |
23 |
22
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ 𝑦 ) ∈ ℕ ) ) |
24 |
23
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ) |
25 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( exp ‘ 𝑥 ) = ( exp ‘ 𝑧 ) ) |
26 |
25
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ 𝑧 ) ∈ ℕ ) ) |
27 |
26
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) |
28 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( exp ‘ 𝑥 ) = ( exp ‘ ( 𝑦 + 𝑧 ) ) ) |
29 |
28
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 + 𝑧 ) → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ ( 𝑦 + 𝑧 ) ) ∈ ℕ ) ) |
30 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑦 ∈ ℝ ) |
31 |
|
simprl |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑧 ∈ ℝ ) |
32 |
30 31
|
readdcld |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( 𝑦 + 𝑧 ) ∈ ℝ ) |
33 |
30
|
recnd |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑦 ∈ ℂ ) |
34 |
31
|
recnd |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → 𝑧 ∈ ℂ ) |
35 |
|
efadd |
⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑦 + 𝑧 ) ) = ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ) |
36 |
33 34 35
|
syl2anc |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( exp ‘ ( 𝑦 + 𝑧 ) ) = ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ) |
37 |
|
nnmulcl |
⊢ ( ( ( exp ‘ 𝑦 ) ∈ ℕ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) → ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ∈ ℕ ) |
38 |
37
|
ad2ant2l |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( ( exp ‘ 𝑦 ) · ( exp ‘ 𝑧 ) ) ∈ ℕ ) |
39 |
36 38
|
eqeltrd |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( exp ‘ ( 𝑦 + 𝑧 ) ) ∈ ℕ ) |
40 |
29 32 39
|
elrabd |
⊢ ( ( ( 𝑦 ∈ ℝ ∧ ( exp ‘ 𝑦 ) ∈ ℕ ) ∧ ( 𝑧 ∈ ℝ ∧ ( exp ‘ 𝑧 ) ∈ ℕ ) ) → ( 𝑦 + 𝑧 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
41 |
24 27 40
|
syl2anb |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ∧ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) → ( 𝑦 + 𝑧 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
42 |
41
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ ( 𝑦 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ∧ 𝑧 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) ) → ( 𝑦 + 𝑧 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
43 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∈ Fin ) |
44 |
|
inss1 |
⊢ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ⊆ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) |
45 |
|
ssfi |
⊢ ( ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∈ Fin ∧ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ⊆ ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ) → ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ∈ Fin ) |
46 |
43 44 45
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ∈ Fin ) |
47 |
|
fveq2 |
⊢ ( 𝑥 = ( log ‘ 𝑝 ) → ( exp ‘ 𝑥 ) = ( exp ‘ ( log ‘ 𝑝 ) ) ) |
48 |
47
|
eleq1d |
⊢ ( 𝑥 = ( log ‘ 𝑝 ) → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ ( log ‘ 𝑝 ) ) ∈ ℕ ) ) |
49 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) |
50 |
49
|
elin2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
51 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
52 |
50 51
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
53 |
52
|
nnrpd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
54 |
53
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
55 |
53
|
reeflogd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → ( exp ‘ ( log ‘ 𝑝 ) ) = 𝑝 ) |
56 |
55 52
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → ( exp ‘ ( log ‘ 𝑝 ) ) ∈ ℕ ) |
57 |
48 54 56
|
elrabd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
58 |
|
0re |
⊢ 0 ∈ ℝ |
59 |
|
1nn |
⊢ 1 ∈ ℕ |
60 |
|
fveq2 |
⊢ ( 𝑥 = 0 → ( exp ‘ 𝑥 ) = ( exp ‘ 0 ) ) |
61 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
62 |
60 61
|
eqtrdi |
⊢ ( 𝑥 = 0 → ( exp ‘ 𝑥 ) = 1 ) |
63 |
62
|
eleq1d |
⊢ ( 𝑥 = 0 → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ 1 ∈ ℕ ) ) |
64 |
63
|
elrab |
⊢ ( 0 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( 0 ∈ ℝ ∧ 1 ∈ ℕ ) ) |
65 |
58 59 64
|
mpbir2an |
⊢ 0 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } |
66 |
65
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 0 ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
67 |
21 42 46 57 66
|
fsumcllem |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → Σ 𝑝 ∈ ( ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ... ( ⌊ ‘ 𝐵 ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
68 |
17 67
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ) |
69 |
|
fveq2 |
⊢ ( 𝑥 = ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) → ( exp ‘ 𝑥 ) = ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) ) |
70 |
69
|
eleq1d |
⊢ ( 𝑥 = ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) → ( ( exp ‘ 𝑥 ) ∈ ℕ ↔ ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) ∈ ℕ ) ) |
71 |
70
|
elrab |
⊢ ( ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } ↔ ( ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ∈ ℝ ∧ ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) ∈ ℕ ) ) |
72 |
71
|
simprbi |
⊢ ( ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ∈ { 𝑥 ∈ ℝ ∣ ( exp ‘ 𝑥 ) ∈ ℕ } → ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) ∈ ℕ ) |
73 |
68 72
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( ( θ ‘ 𝐵 ) − ( θ ‘ 𝐴 ) ) ) ∈ ℕ ) |
74 |
8 73
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ∈ ℕ ) |
75 |
74
|
nnzd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ∈ ℤ ) |
76 |
|
efchtcl |
⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( θ ‘ 𝐴 ) ) ∈ ℕ ) |
77 |
76
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐴 ) ) ∈ ℕ ) |
78 |
77
|
nnzd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐴 ) ) ∈ ℤ ) |
79 |
77
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐴 ) ) ≠ 0 ) |
80 |
|
efchtcl |
⊢ ( 𝐵 ∈ ℝ → ( exp ‘ ( θ ‘ 𝐵 ) ) ∈ ℕ ) |
81 |
80
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐵 ) ) ∈ ℕ ) |
82 |
81
|
nnzd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐵 ) ) ∈ ℤ ) |
83 |
|
dvdsval2 |
⊢ ( ( ( exp ‘ ( θ ‘ 𝐴 ) ) ∈ ℤ ∧ ( exp ‘ ( θ ‘ 𝐴 ) ) ≠ 0 ∧ ( exp ‘ ( θ ‘ 𝐵 ) ) ∈ ℤ ) → ( ( exp ‘ ( θ ‘ 𝐴 ) ) ∥ ( exp ‘ ( θ ‘ 𝐵 ) ) ↔ ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ∈ ℤ ) ) |
84 |
78 79 82 83
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( exp ‘ ( θ ‘ 𝐴 ) ) ∥ ( exp ‘ ( θ ‘ 𝐵 ) ) ↔ ( ( exp ‘ ( θ ‘ 𝐵 ) ) / ( exp ‘ ( θ ‘ 𝐴 ) ) ) ∈ ℤ ) ) |
85 |
75 84
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( exp ‘ ( θ ‘ 𝐴 ) ) ∥ ( exp ‘ ( θ ‘ 𝐵 ) ) ) |