Step |
Hyp |
Ref |
Expression |
1 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
2 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
3 |
2
|
efcvg |
⊢ ( ( ∗ ‘ 𝐴 ) ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ⇝ ( exp ‘ ( ∗ ‘ 𝐴 ) ) ) |
4 |
1 3
|
syl |
⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ⇝ ( exp ‘ ( ∗ ‘ 𝐴 ) ) ) |
5 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
6 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
7 |
6
|
efcvg |
⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ⇝ ( exp ‘ 𝐴 ) ) |
8 |
|
seqex |
⊢ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ V |
9 |
8
|
a1i |
⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ V ) |
10 |
|
0zd |
⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℤ ) |
11 |
6
|
eftval |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
13 |
|
eftcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
14 |
12 13
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
15 |
5 10 14
|
serf |
⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) : ℕ0 ⟶ ℂ ) |
16 |
15
|
ffvelrnda |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
17 |
|
addcl |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝑘 + 𝑚 ) ∈ ℂ ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ) ) → ( 𝑘 + 𝑚 ) ∈ ℂ ) |
19 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
20 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑗 ) → 𝑘 ∈ ℕ0 ) |
21 |
19 20 14
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑗 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
22 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℕ0 ) |
23 |
22 5
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ( ℤ≥ ‘ 0 ) ) |
24 |
|
cjadd |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( ∗ ‘ ( 𝑘 + 𝑚 ) ) = ( ( ∗ ‘ 𝑘 ) + ( ∗ ‘ 𝑚 ) ) ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ) ) → ( ∗ ‘ ( 𝑘 + 𝑚 ) ) = ( ( ∗ ‘ 𝑘 ) + ( ∗ ‘ 𝑚 ) ) ) |
26 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
27 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
28 |
27
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
29 |
28
|
nncnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
30 |
28
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
31 |
26 29 30
|
cjdivd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ∗ ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ∗ ‘ ( 𝐴 ↑ 𝑘 ) ) / ( ∗ ‘ ( ! ‘ 𝑘 ) ) ) ) |
32 |
|
cjexp |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ∗ ‘ ( 𝐴 ↑ 𝑘 ) ) = ( ( ∗ ‘ 𝐴 ) ↑ 𝑘 ) ) |
33 |
28
|
nnred |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
34 |
33
|
cjred |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ∗ ‘ ( ! ‘ 𝑘 ) ) = ( ! ‘ 𝑘 ) ) |
35 |
32 34
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( ∗ ‘ ( 𝐴 ↑ 𝑘 ) ) / ( ∗ ‘ ( ! ‘ 𝑘 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
36 |
31 35
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ∗ ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
37 |
12
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ∗ ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) = ( ∗ ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
38 |
2
|
eftval |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
39 |
38
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
40 |
36 37 39
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ∗ ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
41 |
19 20 40
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑗 ) ) → ( ∗ ‘ ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) = ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
42 |
18 21 23 25 41
|
seqhomo |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( ∗ ‘ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) = ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) |
43 |
42
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) = ( ∗ ‘ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ‘ 𝑗 ) ) ) |
44 |
5 7 9 10 16 43
|
climcj |
⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ⇝ ( ∗ ‘ ( exp ‘ 𝐴 ) ) ) |
45 |
|
climuni |
⊢ ( ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ⇝ ( exp ‘ ( ∗ ‘ 𝐴 ) ) ∧ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( ∗ ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ⇝ ( ∗ ‘ ( exp ‘ 𝐴 ) ) ) → ( exp ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( exp ‘ 𝐴 ) ) ) |
46 |
4 44 45
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ∗ ‘ 𝐴 ) ) = ( ∗ ‘ ( exp ‘ 𝐴 ) ) ) |