Step |
Hyp |
Ref |
Expression |
1 |
|
eftval.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
2 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
3 |
|
eqid |
⊢ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) = ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) |
4 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 1 / 2 ) ∈ ℝ ) |
6 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
7 |
6
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 1 / 2 ) < 1 ) |
8 |
|
2re |
⊢ 2 ∈ ℝ |
9 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
10 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( abs ‘ 𝐴 ) ∈ ℝ ) → ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
11 |
8 9 10
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
12 |
8
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℝ ) |
13 |
|
0le2 |
⊢ 0 ≤ 2 |
14 |
13
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ 2 ) |
15 |
|
absge0 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
16 |
12 9 14 15
|
mulge0d |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( 2 · ( abs ‘ 𝐴 ) ) ) |
17 |
|
flge0nn0 |
⊢ ( ( ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 2 · ( abs ‘ 𝐴 ) ) ) → ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ∈ ℕ0 ) |
18 |
11 16 17
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ∈ ℕ0 ) |
19 |
1
|
eftval |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
21 |
|
eftcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
22 |
20 21
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
23 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
24 |
|
eluznn0 |
⊢ ( ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 𝑘 ∈ ℕ0 ) |
25 |
18 24
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 𝑘 ∈ ℕ0 ) |
26 |
|
nn0p1nn |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) |
27 |
25 26
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
28 |
23 27
|
nndivred |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ∈ ℝ ) |
29 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 1 / 2 ) ∈ ℝ ) |
30 |
23 25
|
reexpcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
31 |
25
|
faccld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
32 |
30 31
|
nndivred |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℝ ) |
33 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
34 |
25 33
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
35 |
34
|
absge0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 0 ≤ ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) ) |
36 |
|
absexp |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
37 |
25 36
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐴 ↑ 𝑘 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
38 |
35 37
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 0 ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
39 |
31
|
nnred |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
40 |
31
|
nngt0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 0 < ( ! ‘ 𝑘 ) ) |
41 |
|
divge0 |
⊢ ( ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ∧ 0 ≤ ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ∧ ( ( ! ‘ 𝑘 ) ∈ ℝ ∧ 0 < ( ! ‘ 𝑘 ) ) ) → 0 ≤ ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
42 |
30 38 39 40 41
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 0 ≤ ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
43 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
44 |
|
peano2nn0 |
⊢ ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ∈ ℕ0 ) |
45 |
18 44
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ∈ ℕ0 ) |
46 |
45
|
nn0red |
⊢ ( 𝐴 ∈ ℂ → ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ∈ ℝ ) |
47 |
46
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ∈ ℝ ) |
48 |
27
|
nnred |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
49 |
|
flltp1 |
⊢ ( ( 2 · ( abs ‘ 𝐴 ) ) ∈ ℝ → ( 2 · ( abs ‘ 𝐴 ) ) < ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ) |
50 |
43 49
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 2 · ( abs ‘ 𝐴 ) ) < ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ) |
51 |
|
eluzp1p1 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ) ) |
52 |
51
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ) ) |
53 |
|
eluzle |
⊢ ( ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ) → ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ≤ ( 𝑘 + 1 ) ) |
54 |
52 53
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) + 1 ) ≤ ( 𝑘 + 1 ) ) |
55 |
43 47 48 50 54
|
ltletrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 2 · ( abs ‘ 𝐴 ) ) < ( 𝑘 + 1 ) ) |
56 |
23
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
57 |
|
2cn |
⊢ 2 ∈ ℂ |
58 |
|
mulcom |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( abs ‘ 𝐴 ) · 2 ) = ( 2 · ( abs ‘ 𝐴 ) ) ) |
59 |
56 57 58
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) · 2 ) = ( 2 · ( abs ‘ 𝐴 ) ) ) |
60 |
27
|
nncnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝑘 + 1 ) ∈ ℂ ) |
61 |
60
|
mulid2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 1 · ( 𝑘 + 1 ) ) = ( 𝑘 + 1 ) ) |
62 |
55 59 61
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) · 2 ) < ( 1 · ( 𝑘 + 1 ) ) ) |
63 |
|
2rp |
⊢ 2 ∈ ℝ+ |
64 |
63
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 2 ∈ ℝ+ ) |
65 |
|
1red |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 1 ∈ ℝ ) |
66 |
27
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝑘 + 1 ) ∈ ℝ+ ) |
67 |
23 64 65 66
|
lt2mul2divd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( ( abs ‘ 𝐴 ) · 2 ) < ( 1 · ( 𝑘 + 1 ) ) ↔ ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) < ( 1 / 2 ) ) ) |
68 |
62 67
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) < ( 1 / 2 ) ) |
69 |
|
ltle |
⊢ ( ( ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) < ( 1 / 2 ) → ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ≤ ( 1 / 2 ) ) ) |
70 |
28 4 69
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) < ( 1 / 2 ) → ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ≤ ( 1 / 2 ) ) ) |
71 |
68 70
|
mpd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ≤ ( 1 / 2 ) ) |
72 |
28 29 32 42 71
|
lemul2ad |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) · ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ) ≤ ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) · ( 1 / 2 ) ) ) |
73 |
|
peano2nn0 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) |
74 |
25 73
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
75 |
1
|
eftval |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ0 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) / ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
76 |
74 75
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) / ( ! ‘ ( 𝑘 + 1 ) ) ) ) |
77 |
76
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( abs ‘ ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) / ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
78 |
|
absexp |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) = ( ( abs ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) |
79 |
74 78
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) = ( ( abs ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) |
80 |
56 25
|
expp1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) · ( abs ‘ 𝐴 ) ) ) |
81 |
79 80
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) · ( abs ‘ 𝐴 ) ) ) |
82 |
74
|
faccld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℕ ) |
83 |
82
|
nnred |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
84 |
82
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℕ0 ) |
85 |
84
|
nn0ge0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → 0 ≤ ( ! ‘ ( 𝑘 + 1 ) ) ) |
86 |
83 85
|
absidd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( ! ‘ ( 𝑘 + 1 ) ) ) = ( ! ‘ ( 𝑘 + 1 ) ) ) |
87 |
|
facp1 |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
88 |
25 87
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
89 |
86 88
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( ! ‘ ( 𝑘 + 1 ) ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
90 |
81 89
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) / ( abs ‘ ( ! ‘ ( 𝑘 + 1 ) ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) · ( abs ‘ 𝐴 ) ) / ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
91 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ) |
92 |
74 91
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ) |
93 |
82
|
nncnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
94 |
82
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ ( 𝑘 + 1 ) ) ≠ 0 ) |
95 |
92 93 94
|
absdivd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) / ( ! ‘ ( 𝑘 + 1 ) ) ) ) = ( ( abs ‘ ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) / ( abs ‘ ( ! ‘ ( 𝑘 + 1 ) ) ) ) ) |
96 |
30
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℂ ) |
97 |
31
|
nncnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
98 |
31
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
99 |
27
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝑘 + 1 ) ≠ 0 ) |
100 |
96 97 56 60 98 99
|
divmuldivd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) · ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) · ( abs ‘ 𝐴 ) ) / ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
101 |
90 95 100
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) / ( ! ‘ ( 𝑘 + 1 ) ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) · ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ) ) |
102 |
77 101
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) · ( ( abs ‘ 𝐴 ) / ( 𝑘 + 1 ) ) ) ) |
103 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
104 |
25 22
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
105 |
104
|
abscld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
106 |
105
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) |
107 |
|
mulcom |
⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℂ ) → ( ( 1 / 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) · ( 1 / 2 ) ) ) |
108 |
103 106 107
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( 1 / 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) · ( 1 / 2 ) ) ) |
109 |
25 19
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
110 |
109
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( abs ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
111 |
|
eftabs |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
112 |
25 111
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
113 |
110 112
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
114 |
113
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) · ( 1 / 2 ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) · ( 1 / 2 ) ) ) |
115 |
108 114
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( ( 1 / 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) = ( ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) · ( 1 / 2 ) ) ) |
116 |
72 102 115
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 2 · ( abs ‘ 𝐴 ) ) ) ) ) → ( abs ‘ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ≤ ( ( 1 / 2 ) · ( abs ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
117 |
2 3 5 7 18 22 116
|
cvgrat |
⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |