Metamath Proof Explorer


Theorem efcvg

Description: The series that defines the exponential function converges to it. (Contributed by NM, 9-Jan-2006) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypothesis efcvg.1 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) )
Assertion efcvg ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ⇝ ( exp ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 efcvg.1 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴𝑛 ) / ( ! ‘ 𝑛 ) ) )
2 nn0uz 0 = ( ℤ ‘ 0 )
3 0zd ( 𝐴 ∈ ℂ → 0 ∈ ℤ )
4 1 eftval ( 𝑘 ∈ ℕ0 → ( 𝐹𝑘 ) = ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )
5 4 adantl ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹𝑘 ) = ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )
6 eftcl ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ )
7 1 efcllem ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ∈ dom ⇝ )
8 2 3 5 6 7 isumclim2 ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ ℕ0 ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )
9 efval ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐴𝑘 ) / ( ! ‘ 𝑘 ) ) )
10 8 9 breqtrrd ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ⇝ ( exp ‘ 𝐴 ) )