Step |
Hyp |
Ref |
Expression |
1 |
|
efcvg.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
2 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
3 |
|
0zd |
⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℤ ) |
4 |
1
|
eftval |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
6 |
|
eftcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
7 |
1
|
efcllem |
⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
8 |
2 3 5 6 7
|
isumclim2 |
⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ ℕ0 ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
9 |
|
efval |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐴 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
10 |
8 9
|
breqtrrd |
⊢ ( 𝐴 ∈ ℂ → seq 0 ( + , 𝐹 ) ⇝ ( exp ‘ 𝐴 ) ) |