Step |
Hyp |
Ref |
Expression |
1 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ℝ ) |
2 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ℝ ) |
3 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 < 𝐵 ) |
4 |
|
reeff1o |
⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ |
5 |
|
f1of |
⊢ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ → ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ) |
6 |
4 5
|
ax-mp |
⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ |
7 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
8 |
|
fss |
⊢ ( ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ∧ ℝ+ ⊆ ℝ ) → ( exp ↾ ℝ ) : ℝ ⟶ ℝ ) |
9 |
6 7 8
|
mp2an |
⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℝ |
10 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
11 |
1 2 10
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
12 |
|
fssres2 |
⊢ ( ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( exp ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
13 |
9 11 12
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
14 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
15 |
11 14
|
sstrdi |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
16 |
|
efcn |
⊢ exp ∈ ( ℂ –cn→ ℂ ) |
17 |
|
rescncf |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( exp ∈ ( ℂ –cn→ ℂ ) → ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) |
18 |
15 16 17
|
mpisyl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
19 |
|
cncffvrn |
⊢ ( ( ℝ ⊆ ℂ ∧ ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ↔ ( exp ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) |
20 |
14 18 19
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ↔ ( exp ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) |
21 |
13 20
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
22 |
|
reefiso |
⊢ ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) |
23 |
22
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) ) |
24 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
25 |
24
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
26 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) = ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) |
27 |
|
isores3 |
⊢ ( ( ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ∧ ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) = ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) → ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ) |
28 |
23 25 26 27
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ) |
29 |
|
ssid |
⊢ ℝ ⊆ ℝ |
30 |
|
fss |
⊢ ( ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ( exp ↾ ℝ ) : ℝ ⟶ ℂ ) |
31 |
9 14 30
|
mp2an |
⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℂ |
32 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
33 |
32
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
34 |
32 33
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ ( exp ↾ ℝ ) : ℝ ⟶ ℂ ) ∧ ( ℝ ⊆ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) ) → ( ℝ D ( ( exp ↾ ℝ ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( exp ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
35 |
14 31 34
|
mpanl12 |
⊢ ( ( ℝ ⊆ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( ℝ D ( ( exp ↾ ℝ ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( exp ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
36 |
29 11 35
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( ( exp ↾ ℝ ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( exp ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
37 |
11
|
resabs1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ℝ ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) |
38 |
37
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( ( exp ↾ ℝ ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) ) |
39 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
40 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
41 |
|
ssid |
⊢ ℂ ⊆ ℂ |
42 |
|
dvef |
⊢ ( ℂ D exp ) = exp |
43 |
42
|
dmeqi |
⊢ dom ( ℂ D exp ) = dom exp |
44 |
40
|
fdmi |
⊢ dom exp = ℂ |
45 |
43 44
|
eqtri |
⊢ dom ( ℂ D exp ) = ℂ |
46 |
14 45
|
sseqtrri |
⊢ ℝ ⊆ dom ( ℂ D exp ) |
47 |
|
dvres3 |
⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ exp : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D exp ) ) ) → ( ℝ D ( exp ↾ ℝ ) ) = ( ( ℂ D exp ) ↾ ℝ ) ) |
48 |
39 40 41 46 47
|
mp4an |
⊢ ( ℝ D ( exp ↾ ℝ ) ) = ( ( ℂ D exp ) ↾ ℝ ) |
49 |
42
|
reseq1i |
⊢ ( ( ℂ D exp ) ↾ ℝ ) = ( exp ↾ ℝ ) |
50 |
48 49
|
eqtri |
⊢ ( ℝ D ( exp ↾ ℝ ) ) = ( exp ↾ ℝ ) |
51 |
50
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( exp ↾ ℝ ) ) = ( exp ↾ ℝ ) ) |
52 |
|
iccntr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
53 |
1 2 52
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
54 |
51 53
|
reseq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ℝ D ( exp ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) = ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
55 |
36 38 54
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
56 |
|
isoeq1 |
⊢ ( ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ↔ ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ) ) |
57 |
55 56
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ↔ ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ) ) |
58 |
28 57
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ) |
59 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ( 0 (,) 1 ) ) |
60 |
|
eqid |
⊢ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) = ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) |
61 |
1 2 3 21 58 59 60
|
dvcvx |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) < ( ( 𝑇 · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) ) ) ) |
62 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
63 |
|
ioossre |
⊢ ( 0 (,) 1 ) ⊆ ℝ |
64 |
63 59
|
sselid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ℝ ) |
65 |
64
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ℂ ) |
66 |
|
nncan |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
67 |
62 65 66
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
68 |
67
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) = ( 𝑇 · 𝐴 ) ) |
69 |
68
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) = ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) |
70 |
|
ioossicc |
⊢ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) |
71 |
70 59
|
sselid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ( 0 [,] 1 ) ) |
72 |
|
iirev |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) |
73 |
71 72
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) |
74 |
|
lincmb01cmp |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
75 |
73 74
|
syldan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
76 |
69 75
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
77 |
76
|
fvresd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) = ( exp ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ) |
78 |
1
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ℝ* ) |
79 |
2
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ℝ* ) |
80 |
1 2 3
|
ltled |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ≤ 𝐵 ) |
81 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
82 |
78 79 80 81
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
83 |
82
|
fvresd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) = ( exp ‘ 𝐴 ) ) |
84 |
83
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑇 · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( 𝑇 · ( exp ‘ 𝐴 ) ) ) |
85 |
|
ubicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
86 |
78 79 80 85
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
87 |
86
|
fvresd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) = ( exp ‘ 𝐵 ) ) |
88 |
87
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑇 ) · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) ) = ( ( 1 − 𝑇 ) · ( exp ‘ 𝐵 ) ) ) |
89 |
84 88
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) ) ) = ( ( 𝑇 · ( exp ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( exp ‘ 𝐵 ) ) ) ) |
90 |
61 77 89
|
3brtr3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) < ( ( 𝑇 · ( exp ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( exp ‘ 𝐵 ) ) ) ) |