| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ℝ ) |
| 2 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ℝ ) |
| 3 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 < 𝐵 ) |
| 4 |
|
reeff1o |
⊢ ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ |
| 5 |
|
f1of |
⊢ ( ( exp ↾ ℝ ) : ℝ –1-1-onto→ ℝ+ → ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ) |
| 6 |
4 5
|
ax-mp |
⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ |
| 7 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 8 |
|
fss |
⊢ ( ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ+ ∧ ℝ+ ⊆ ℝ ) → ( exp ↾ ℝ ) : ℝ ⟶ ℝ ) |
| 9 |
6 7 8
|
mp2an |
⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℝ |
| 10 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 11 |
1 2 10
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 12 |
|
fssres2 |
⊢ ( ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( exp ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 13 |
9 11 12
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) |
| 14 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 15 |
11 14
|
sstrdi |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 16 |
|
efcn |
⊢ exp ∈ ( ℂ –cn→ ℂ ) |
| 17 |
|
rescncf |
⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( exp ∈ ( ℂ –cn→ ℂ ) → ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) |
| 18 |
15 16 17
|
mpisyl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 19 |
|
cncfcdm |
⊢ ( ( ℝ ⊆ ℂ ∧ ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ↔ ( exp ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) |
| 20 |
14 18 19
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ↔ ( exp ↾ ( 𝐴 [,] 𝐵 ) ) : ( 𝐴 [,] 𝐵 ) ⟶ ℝ ) ) |
| 21 |
13 20
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℝ ) ) |
| 22 |
|
reefiso |
⊢ ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) |
| 23 |
22
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) ) |
| 24 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 25 |
24
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) |
| 26 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) = ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) |
| 27 |
|
isores3 |
⊢ ( ( ( exp ↾ ℝ ) Isom < , < ( ℝ , ℝ+ ) ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ∧ ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) = ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) → ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ) |
| 28 |
23 25 26 27
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ) |
| 29 |
|
ssid |
⊢ ℝ ⊆ ℝ |
| 30 |
|
fss |
⊢ ( ( ( exp ↾ ℝ ) : ℝ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ( exp ↾ ℝ ) : ℝ ⟶ ℂ ) |
| 31 |
9 14 30
|
mp2an |
⊢ ( exp ↾ ℝ ) : ℝ ⟶ ℂ |
| 32 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 33 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 34 |
32 33
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ ( exp ↾ ℝ ) : ℝ ⟶ ℂ ) ∧ ( ℝ ⊆ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) ) → ( ℝ D ( ( exp ↾ ℝ ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( exp ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 35 |
14 31 34
|
mpanl12 |
⊢ ( ( ℝ ⊆ ℝ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) → ( ℝ D ( ( exp ↾ ℝ ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( exp ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 36 |
29 11 35
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( ( exp ↾ ℝ ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( ℝ D ( exp ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 37 |
11
|
resabs1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ℝ ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) |
| 38 |
37
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( ( exp ↾ ℝ ) ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) ) |
| 39 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 40 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
| 41 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 42 |
|
dvef |
⊢ ( ℂ D exp ) = exp |
| 43 |
42
|
dmeqi |
⊢ dom ( ℂ D exp ) = dom exp |
| 44 |
40
|
fdmi |
⊢ dom exp = ℂ |
| 45 |
43 44
|
eqtri |
⊢ dom ( ℂ D exp ) = ℂ |
| 46 |
14 45
|
sseqtrri |
⊢ ℝ ⊆ dom ( ℂ D exp ) |
| 47 |
|
dvres3 |
⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ exp : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D exp ) ) ) → ( ℝ D ( exp ↾ ℝ ) ) = ( ( ℂ D exp ) ↾ ℝ ) ) |
| 48 |
39 40 41 46 47
|
mp4an |
⊢ ( ℝ D ( exp ↾ ℝ ) ) = ( ( ℂ D exp ) ↾ ℝ ) |
| 49 |
42
|
reseq1i |
⊢ ( ( ℂ D exp ) ↾ ℝ ) = ( exp ↾ ℝ ) |
| 50 |
48 49
|
eqtri |
⊢ ( ℝ D ( exp ↾ ℝ ) ) = ( exp ↾ ℝ ) |
| 51 |
50
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( exp ↾ ℝ ) ) = ( exp ↾ ℝ ) ) |
| 52 |
|
iccntr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 53 |
1 2 52
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 54 |
51 53
|
reseq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ℝ D ( exp ↾ ℝ ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) ) = ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
| 55 |
36 38 54
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
| 56 |
|
isoeq1 |
⊢ ( ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) = ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ↔ ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ) ) |
| 57 |
55 56
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ↔ ( ( exp ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ) ) |
| 58 |
28 57
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ℝ D ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ) Isom < , < ( ( 𝐴 (,) 𝐵 ) , ( ( exp ↾ ℝ ) “ ( 𝐴 (,) 𝐵 ) ) ) ) |
| 59 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ( 0 (,) 1 ) ) |
| 60 |
|
eqid |
⊢ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) = ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) |
| 61 |
1 2 3 21 58 59 60
|
dvcvx |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) < ( ( 𝑇 · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) ) ) ) |
| 62 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 63 |
|
ioossre |
⊢ ( 0 (,) 1 ) ⊆ ℝ |
| 64 |
63 59
|
sselid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ℝ ) |
| 65 |
64
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ℂ ) |
| 66 |
|
nncan |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
| 67 |
62 65 66
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
| 68 |
67
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) = ( 𝑇 · 𝐴 ) ) |
| 69 |
68
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) = ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) |
| 70 |
|
ioossicc |
⊢ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) |
| 71 |
70 59
|
sselid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝑇 ∈ ( 0 [,] 1 ) ) |
| 72 |
|
iirev |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) |
| 73 |
71 72
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) |
| 74 |
|
lincmb01cmp |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 75 |
73 74
|
syldan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 76 |
69 75
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 77 |
76
|
fvresd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) = ( exp ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) ) |
| 78 |
1
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ℝ* ) |
| 79 |
2
|
rexrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ℝ* ) |
| 80 |
1 2 3
|
ltled |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ≤ 𝐵 ) |
| 81 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 82 |
78 79 80 81
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 83 |
82
|
fvresd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) = ( exp ‘ 𝐴 ) ) |
| 84 |
83
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( 𝑇 · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) = ( 𝑇 · ( exp ‘ 𝐴 ) ) ) |
| 85 |
|
ubicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 86 |
78 79 80 85
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 87 |
86
|
fvresd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) = ( exp ‘ 𝐵 ) ) |
| 88 |
87
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 1 − 𝑇 ) · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) ) = ( ( 1 − 𝑇 ) · ( exp ‘ 𝐵 ) ) ) |
| 89 |
84 88
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( ( 𝑇 · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( ( exp ↾ ( 𝐴 [,] 𝐵 ) ) ‘ 𝐵 ) ) ) = ( ( 𝑇 · ( exp ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( exp ‘ 𝐵 ) ) ) ) |
| 90 |
61 77 89
|
3brtr3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) ∧ 𝑇 ∈ ( 0 (,) 1 ) ) → ( exp ‘ ( ( 𝑇 · 𝐴 ) + ( ( 1 − 𝑇 ) · 𝐵 ) ) ) < ( ( 𝑇 · ( exp ‘ 𝐴 ) ) + ( ( 1 − 𝑇 ) · ( exp ‘ 𝐵 ) ) ) ) |