Step |
Hyp |
Ref |
Expression |
1 |
|
halfcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 2 ) ∈ ℂ ) |
2 |
|
ax-icn |
⊢ i ∈ ℂ |
3 |
|
ine0 |
⊢ i ≠ 0 |
4 |
|
divcl |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( ( 𝐴 / 2 ) / i ) ∈ ℂ ) |
5 |
2 3 4
|
mp3an23 |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( 𝐴 / 2 ) / i ) ∈ ℂ ) |
6 |
1 5
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) / i ) ∈ ℂ ) |
7 |
|
sineq0 |
⊢ ( ( ( 𝐴 / 2 ) / i ) ∈ ℂ → ( ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = 0 ↔ ( ( ( 𝐴 / 2 ) / i ) / π ) ∈ ℤ ) ) |
8 |
6 7
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = 0 ↔ ( ( ( 𝐴 / 2 ) / i ) / π ) ∈ ℤ ) ) |
9 |
|
sinval |
⊢ ( ( ( 𝐴 / 2 ) / i ) ∈ ℂ → ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = ( ( ( exp ‘ ( i · ( ( 𝐴 / 2 ) / i ) ) ) − ( exp ‘ ( - i · ( ( 𝐴 / 2 ) / i ) ) ) ) / ( 2 · i ) ) ) |
10 |
6 9
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = ( ( ( exp ‘ ( i · ( ( 𝐴 / 2 ) / i ) ) ) − ( exp ‘ ( - i · ( ( 𝐴 / 2 ) / i ) ) ) ) / ( 2 · i ) ) ) |
11 |
|
divcan2 |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( i · ( ( 𝐴 / 2 ) / i ) ) = ( 𝐴 / 2 ) ) |
12 |
2 3 11
|
mp3an23 |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( i · ( ( 𝐴 / 2 ) / i ) ) = ( 𝐴 / 2 ) ) |
13 |
1 12
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ( 𝐴 / 2 ) / i ) ) = ( 𝐴 / 2 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( ( 𝐴 / 2 ) / i ) ) ) = ( exp ‘ ( 𝐴 / 2 ) ) ) |
15 |
|
mulneg1 |
⊢ ( ( i ∈ ℂ ∧ ( ( 𝐴 / 2 ) / i ) ∈ ℂ ) → ( - i · ( ( 𝐴 / 2 ) / i ) ) = - ( i · ( ( 𝐴 / 2 ) / i ) ) ) |
16 |
2 6 15
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( - i · ( ( 𝐴 / 2 ) / i ) ) = - ( i · ( ( 𝐴 / 2 ) / i ) ) ) |
17 |
13
|
negeqd |
⊢ ( 𝐴 ∈ ℂ → - ( i · ( ( 𝐴 / 2 ) / i ) ) = - ( 𝐴 / 2 ) ) |
18 |
16 17
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( - i · ( ( 𝐴 / 2 ) / i ) ) = - ( 𝐴 / 2 ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( ( 𝐴 / 2 ) / i ) ) ) = ( exp ‘ - ( 𝐴 / 2 ) ) ) |
20 |
14 19
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( ( 𝐴 / 2 ) / i ) ) ) − ( exp ‘ ( - i · ( ( 𝐴 / 2 ) / i ) ) ) ) = ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · ( ( 𝐴 / 2 ) / i ) ) ) − ( exp ‘ ( - i · ( ( 𝐴 / 2 ) / i ) ) ) ) / ( 2 · i ) ) = ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) ) |
22 |
10 21
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) ) |
23 |
22
|
eqeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = 0 ↔ ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) = 0 ) ) |
24 |
|
efcl |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( exp ‘ ( 𝐴 / 2 ) ) ∈ ℂ ) |
25 |
1 24
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 / 2 ) ) ∈ ℂ ) |
26 |
1
|
negcld |
⊢ ( 𝐴 ∈ ℂ → - ( 𝐴 / 2 ) ∈ ℂ ) |
27 |
|
efcl |
⊢ ( - ( 𝐴 / 2 ) ∈ ℂ → ( exp ‘ - ( 𝐴 / 2 ) ) ∈ ℂ ) |
28 |
26 27
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - ( 𝐴 / 2 ) ) ∈ ℂ ) |
29 |
25 28
|
subcld |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) ∈ ℂ ) |
30 |
|
2cn |
⊢ 2 ∈ ℂ |
31 |
30 2
|
mulcli |
⊢ ( 2 · i ) ∈ ℂ |
32 |
|
2ne0 |
⊢ 2 ≠ 0 |
33 |
30 2 32 3
|
mulne0i |
⊢ ( 2 · i ) ≠ 0 |
34 |
|
diveq0 |
⊢ ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) ∈ ℂ ∧ ( 2 · i ) ∈ ℂ ∧ ( 2 · i ) ≠ 0 ) → ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) = 0 ↔ ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ) ) |
35 |
31 33 34
|
mp3an23 |
⊢ ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) ∈ ℂ → ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) = 0 ↔ ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ) ) |
36 |
29 35
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) = 0 ↔ ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ) ) |
37 |
|
efne0 |
⊢ ( - ( 𝐴 / 2 ) ∈ ℂ → ( exp ‘ - ( 𝐴 / 2 ) ) ≠ 0 ) |
38 |
26 37
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - ( 𝐴 / 2 ) ) ≠ 0 ) |
39 |
25 28 28 38
|
divsubdird |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = ( ( ( exp ‘ ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) − ( ( exp ‘ - ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) ) ) |
40 |
|
efsub |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℂ ∧ - ( 𝐴 / 2 ) ∈ ℂ ) → ( exp ‘ ( ( 𝐴 / 2 ) − - ( 𝐴 / 2 ) ) ) = ( ( exp ‘ ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) ) |
41 |
1 26 40
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( 𝐴 / 2 ) − - ( 𝐴 / 2 ) ) ) = ( ( exp ‘ ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) ) |
42 |
1 1
|
subnegd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) − - ( 𝐴 / 2 ) ) = ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) ) |
43 |
|
2halves |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 ) |
44 |
42 43
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) − - ( 𝐴 / 2 ) ) = 𝐴 ) |
45 |
44
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( 𝐴 / 2 ) − - ( 𝐴 / 2 ) ) ) = ( exp ‘ 𝐴 ) ) |
46 |
41 45
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = ( exp ‘ 𝐴 ) ) |
47 |
28 38
|
dividd |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = 1 ) |
48 |
46 47
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) − ( ( exp ‘ - ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) ) = ( ( exp ‘ 𝐴 ) − 1 ) ) |
49 |
39 48
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = ( ( exp ‘ 𝐴 ) − 1 ) ) |
50 |
49
|
eqeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ↔ ( ( exp ‘ 𝐴 ) − 1 ) = 0 ) ) |
51 |
29 28 38
|
diveq0ad |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ↔ ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ) ) |
52 |
|
efcl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) |
53 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
54 |
|
subeq0 |
⊢ ( ( ( exp ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( exp ‘ 𝐴 ) − 1 ) = 0 ↔ ( exp ‘ 𝐴 ) = 1 ) ) |
55 |
52 53 54
|
sylancl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ 𝐴 ) − 1 ) = 0 ↔ ( exp ‘ 𝐴 ) = 1 ) ) |
56 |
50 51 55
|
3bitr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ↔ ( exp ‘ 𝐴 ) = 1 ) ) |
57 |
23 36 56
|
3bitrd |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = 0 ↔ ( exp ‘ 𝐴 ) = 1 ) ) |
58 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
59 |
2 3
|
pm3.2i |
⊢ ( i ∈ ℂ ∧ i ≠ 0 ) |
60 |
|
divdiv32 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( 𝐴 / 2 ) / i ) = ( ( 𝐴 / i ) / 2 ) ) |
61 |
58 59 60
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) / i ) = ( ( 𝐴 / i ) / 2 ) ) |
62 |
61
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 / 2 ) / i ) / π ) = ( ( ( 𝐴 / i ) / 2 ) / π ) ) |
63 |
|
divcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( 𝐴 / i ) ∈ ℂ ) |
64 |
2 3 63
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / i ) ∈ ℂ ) |
65 |
|
picn |
⊢ π ∈ ℂ |
66 |
|
pire |
⊢ π ∈ ℝ |
67 |
|
pipos |
⊢ 0 < π |
68 |
66 67
|
gt0ne0ii |
⊢ π ≠ 0 |
69 |
65 68
|
pm3.2i |
⊢ ( π ∈ ℂ ∧ π ≠ 0 ) |
70 |
|
divdiv1 |
⊢ ( ( ( 𝐴 / i ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( π ∈ ℂ ∧ π ≠ 0 ) ) → ( ( ( 𝐴 / i ) / 2 ) / π ) = ( ( 𝐴 / i ) / ( 2 · π ) ) ) |
71 |
58 69 70
|
mp3an23 |
⊢ ( ( 𝐴 / i ) ∈ ℂ → ( ( ( 𝐴 / i ) / 2 ) / π ) = ( ( 𝐴 / i ) / ( 2 · π ) ) ) |
72 |
64 71
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 / i ) / 2 ) / π ) = ( ( 𝐴 / i ) / ( 2 · π ) ) ) |
73 |
30 65
|
mulcli |
⊢ ( 2 · π ) ∈ ℂ |
74 |
30 65 32 68
|
mulne0i |
⊢ ( 2 · π ) ≠ 0 |
75 |
73 74
|
pm3.2i |
⊢ ( ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) |
76 |
|
divdiv1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ∧ ( ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) ) → ( ( 𝐴 / i ) / ( 2 · π ) ) = ( 𝐴 / ( i · ( 2 · π ) ) ) ) |
77 |
59 75 76
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / i ) / ( 2 · π ) ) = ( 𝐴 / ( i · ( 2 · π ) ) ) ) |
78 |
72 77
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 / i ) / 2 ) / π ) = ( 𝐴 / ( i · ( 2 · π ) ) ) ) |
79 |
62 78
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 / 2 ) / i ) / π ) = ( 𝐴 / ( i · ( 2 · π ) ) ) ) |
80 |
79
|
eleq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( 𝐴 / 2 ) / i ) / π ) ∈ ℤ ↔ ( 𝐴 / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
81 |
8 57 80
|
3bitr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) = 1 ↔ ( 𝐴 / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |