| Step |
Hyp |
Ref |
Expression |
| 1 |
|
halfcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 2 ) ∈ ℂ ) |
| 2 |
|
ax-icn |
⊢ i ∈ ℂ |
| 3 |
|
ine0 |
⊢ i ≠ 0 |
| 4 |
|
divcl |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( ( 𝐴 / 2 ) / i ) ∈ ℂ ) |
| 5 |
2 3 4
|
mp3an23 |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( ( 𝐴 / 2 ) / i ) ∈ ℂ ) |
| 6 |
1 5
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) / i ) ∈ ℂ ) |
| 7 |
|
sineq0 |
⊢ ( ( ( 𝐴 / 2 ) / i ) ∈ ℂ → ( ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = 0 ↔ ( ( ( 𝐴 / 2 ) / i ) / π ) ∈ ℤ ) ) |
| 8 |
6 7
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = 0 ↔ ( ( ( 𝐴 / 2 ) / i ) / π ) ∈ ℤ ) ) |
| 9 |
|
sinval |
⊢ ( ( ( 𝐴 / 2 ) / i ) ∈ ℂ → ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = ( ( ( exp ‘ ( i · ( ( 𝐴 / 2 ) / i ) ) ) − ( exp ‘ ( - i · ( ( 𝐴 / 2 ) / i ) ) ) ) / ( 2 · i ) ) ) |
| 10 |
6 9
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = ( ( ( exp ‘ ( i · ( ( 𝐴 / 2 ) / i ) ) ) − ( exp ‘ ( - i · ( ( 𝐴 / 2 ) / i ) ) ) ) / ( 2 · i ) ) ) |
| 11 |
|
divcan2 |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( i · ( ( 𝐴 / 2 ) / i ) ) = ( 𝐴 / 2 ) ) |
| 12 |
2 3 11
|
mp3an23 |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( i · ( ( 𝐴 / 2 ) / i ) ) = ( 𝐴 / 2 ) ) |
| 13 |
1 12
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ( 𝐴 / 2 ) / i ) ) = ( 𝐴 / 2 ) ) |
| 14 |
13
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( ( 𝐴 / 2 ) / i ) ) ) = ( exp ‘ ( 𝐴 / 2 ) ) ) |
| 15 |
|
mulneg1 |
⊢ ( ( i ∈ ℂ ∧ ( ( 𝐴 / 2 ) / i ) ∈ ℂ ) → ( - i · ( ( 𝐴 / 2 ) / i ) ) = - ( i · ( ( 𝐴 / 2 ) / i ) ) ) |
| 16 |
2 6 15
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( - i · ( ( 𝐴 / 2 ) / i ) ) = - ( i · ( ( 𝐴 / 2 ) / i ) ) ) |
| 17 |
13
|
negeqd |
⊢ ( 𝐴 ∈ ℂ → - ( i · ( ( 𝐴 / 2 ) / i ) ) = - ( 𝐴 / 2 ) ) |
| 18 |
16 17
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( - i · ( ( 𝐴 / 2 ) / i ) ) = - ( 𝐴 / 2 ) ) |
| 19 |
18
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( ( 𝐴 / 2 ) / i ) ) ) = ( exp ‘ - ( 𝐴 / 2 ) ) ) |
| 20 |
14 19
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( ( 𝐴 / 2 ) / i ) ) ) − ( exp ‘ ( - i · ( ( 𝐴 / 2 ) / i ) ) ) ) = ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) ) |
| 21 |
20
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · ( ( 𝐴 / 2 ) / i ) ) ) − ( exp ‘ ( - i · ( ( 𝐴 / 2 ) / i ) ) ) ) / ( 2 · i ) ) = ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) ) |
| 22 |
10 21
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) ) |
| 23 |
22
|
eqeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = 0 ↔ ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) = 0 ) ) |
| 24 |
|
efcl |
⊢ ( ( 𝐴 / 2 ) ∈ ℂ → ( exp ‘ ( 𝐴 / 2 ) ) ∈ ℂ ) |
| 25 |
1 24
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 / 2 ) ) ∈ ℂ ) |
| 26 |
1
|
negcld |
⊢ ( 𝐴 ∈ ℂ → - ( 𝐴 / 2 ) ∈ ℂ ) |
| 27 |
|
efcl |
⊢ ( - ( 𝐴 / 2 ) ∈ ℂ → ( exp ‘ - ( 𝐴 / 2 ) ) ∈ ℂ ) |
| 28 |
26 27
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - ( 𝐴 / 2 ) ) ∈ ℂ ) |
| 29 |
25 28
|
subcld |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) ∈ ℂ ) |
| 30 |
|
2cn |
⊢ 2 ∈ ℂ |
| 31 |
30 2
|
mulcli |
⊢ ( 2 · i ) ∈ ℂ |
| 32 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 33 |
30 2 32 3
|
mulne0i |
⊢ ( 2 · i ) ≠ 0 |
| 34 |
|
diveq0 |
⊢ ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) ∈ ℂ ∧ ( 2 · i ) ∈ ℂ ∧ ( 2 · i ) ≠ 0 ) → ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) = 0 ↔ ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ) ) |
| 35 |
31 33 34
|
mp3an23 |
⊢ ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) ∈ ℂ → ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) = 0 ↔ ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ) ) |
| 36 |
29 35
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( 2 · i ) ) = 0 ↔ ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ) ) |
| 37 |
|
efne0 |
⊢ ( - ( 𝐴 / 2 ) ∈ ℂ → ( exp ‘ - ( 𝐴 / 2 ) ) ≠ 0 ) |
| 38 |
26 37
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ - ( 𝐴 / 2 ) ) ≠ 0 ) |
| 39 |
25 28 28 38
|
divsubdird |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = ( ( ( exp ‘ ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) − ( ( exp ‘ - ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) ) ) |
| 40 |
|
efsub |
⊢ ( ( ( 𝐴 / 2 ) ∈ ℂ ∧ - ( 𝐴 / 2 ) ∈ ℂ ) → ( exp ‘ ( ( 𝐴 / 2 ) − - ( 𝐴 / 2 ) ) ) = ( ( exp ‘ ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) ) |
| 41 |
1 26 40
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( 𝐴 / 2 ) − - ( 𝐴 / 2 ) ) ) = ( ( exp ‘ ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) ) |
| 42 |
1 1
|
subnegd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) − - ( 𝐴 / 2 ) ) = ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) ) |
| 43 |
|
2halves |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) + ( 𝐴 / 2 ) ) = 𝐴 ) |
| 44 |
42 43
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) − - ( 𝐴 / 2 ) ) = 𝐴 ) |
| 45 |
44
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( 𝐴 / 2 ) − - ( 𝐴 / 2 ) ) ) = ( exp ‘ 𝐴 ) ) |
| 46 |
41 45
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = ( exp ‘ 𝐴 ) ) |
| 47 |
28 38
|
dividd |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ - ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = 1 ) |
| 48 |
46 47
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) − ( ( exp ‘ - ( 𝐴 / 2 ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) ) = ( ( exp ‘ 𝐴 ) − 1 ) ) |
| 49 |
39 48
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = ( ( exp ‘ 𝐴 ) − 1 ) ) |
| 50 |
49
|
eqeq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ↔ ( ( exp ‘ 𝐴 ) − 1 ) = 0 ) ) |
| 51 |
29 28 38
|
diveq0ad |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) / ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ↔ ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ) ) |
| 52 |
|
efcl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) |
| 53 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 54 |
|
subeq0 |
⊢ ( ( ( exp ‘ 𝐴 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( exp ‘ 𝐴 ) − 1 ) = 0 ↔ ( exp ‘ 𝐴 ) = 1 ) ) |
| 55 |
52 53 54
|
sylancl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ 𝐴 ) − 1 ) = 0 ↔ ( exp ‘ 𝐴 ) = 1 ) ) |
| 56 |
50 51 55
|
3bitr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( 𝐴 / 2 ) ) − ( exp ‘ - ( 𝐴 / 2 ) ) ) = 0 ↔ ( exp ‘ 𝐴 ) = 1 ) ) |
| 57 |
23 36 56
|
3bitrd |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( ( 𝐴 / 2 ) / i ) ) = 0 ↔ ( exp ‘ 𝐴 ) = 1 ) ) |
| 58 |
|
2cnne0 |
⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) |
| 59 |
2 3
|
pm3.2i |
⊢ ( i ∈ ℂ ∧ i ≠ 0 ) |
| 60 |
|
divdiv32 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ) → ( ( 𝐴 / 2 ) / i ) = ( ( 𝐴 / i ) / 2 ) ) |
| 61 |
58 59 60
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / 2 ) / i ) = ( ( 𝐴 / i ) / 2 ) ) |
| 62 |
61
|
oveq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 / 2 ) / i ) / π ) = ( ( ( 𝐴 / i ) / 2 ) / π ) ) |
| 63 |
|
divcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0 ) → ( 𝐴 / i ) ∈ ℂ ) |
| 64 |
2 3 63
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / i ) ∈ ℂ ) |
| 65 |
|
picn |
⊢ π ∈ ℂ |
| 66 |
|
pire |
⊢ π ∈ ℝ |
| 67 |
|
pipos |
⊢ 0 < π |
| 68 |
66 67
|
gt0ne0ii |
⊢ π ≠ 0 |
| 69 |
65 68
|
pm3.2i |
⊢ ( π ∈ ℂ ∧ π ≠ 0 ) |
| 70 |
|
divdiv1 |
⊢ ( ( ( 𝐴 / i ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ∧ ( π ∈ ℂ ∧ π ≠ 0 ) ) → ( ( ( 𝐴 / i ) / 2 ) / π ) = ( ( 𝐴 / i ) / ( 2 · π ) ) ) |
| 71 |
58 69 70
|
mp3an23 |
⊢ ( ( 𝐴 / i ) ∈ ℂ → ( ( ( 𝐴 / i ) / 2 ) / π ) = ( ( 𝐴 / i ) / ( 2 · π ) ) ) |
| 72 |
64 71
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 / i ) / 2 ) / π ) = ( ( 𝐴 / i ) / ( 2 · π ) ) ) |
| 73 |
30 65
|
mulcli |
⊢ ( 2 · π ) ∈ ℂ |
| 74 |
30 65 32 68
|
mulne0i |
⊢ ( 2 · π ) ≠ 0 |
| 75 |
73 74
|
pm3.2i |
⊢ ( ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) |
| 76 |
|
divdiv1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( i ∈ ℂ ∧ i ≠ 0 ) ∧ ( ( 2 · π ) ∈ ℂ ∧ ( 2 · π ) ≠ 0 ) ) → ( ( 𝐴 / i ) / ( 2 · π ) ) = ( 𝐴 / ( i · ( 2 · π ) ) ) ) |
| 77 |
59 75 76
|
mp3an23 |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 / i ) / ( 2 · π ) ) = ( 𝐴 / ( i · ( 2 · π ) ) ) ) |
| 78 |
72 77
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 / i ) / 2 ) / π ) = ( 𝐴 / ( i · ( 2 · π ) ) ) ) |
| 79 |
62 78
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 / 2 ) / i ) / π ) = ( 𝐴 / ( i · ( 2 · π ) ) ) ) |
| 80 |
79
|
eleq1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( 𝐴 / 2 ) / i ) / π ) ∈ ℤ ↔ ( 𝐴 / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |
| 81 |
8 57 80
|
3bitr3d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) = 1 ↔ ( 𝐴 / ( i · ( 2 · π ) ) ) ∈ ℤ ) ) |