Metamath Proof Explorer


Theorem efeul

Description: Eulerian representation of the complex exponential. (Suggested by Jeff Hankins, 3-Jul-2006.) (Contributed by NM, 4-Jul-2006)

Ref Expression
Assertion efeul ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( ( cos ‘ ( ℑ ‘ 𝐴 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 replim ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) )
2 1 fveq2d ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) )
3 recl ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ )
4 3 recnd ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ )
5 ax-icn i ∈ ℂ
6 imcl ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ )
7 6 recnd ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ )
8 mulcl ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ )
9 5 7 8 sylancr ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ )
10 efadd ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) → ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) )
11 4 9 10 syl2anc ( 𝐴 ∈ ℂ → ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) )
12 efival ( ( ℑ ‘ 𝐴 ) ∈ ℂ → ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( cos ‘ ( ℑ ‘ 𝐴 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) )
13 7 12 syl ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( cos ‘ ( ℑ ‘ 𝐴 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) )
14 13 oveq2d ( 𝐴 ∈ ℂ → ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( ( cos ‘ ( ℑ ‘ 𝐴 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) )
15 2 11 14 3eqtrd ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( ( cos ‘ ( ℑ ‘ 𝐴 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) )