| Step | Hyp | Ref | Expression | 
						
							| 1 |  | replim | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  =  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 2 | 1 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ 𝐴 )  =  ( exp ‘ ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) | 
						
							| 3 |  | recl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 4 | 3 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 5 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 6 |  | imcl | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 7 | 6 | recnd | ⊢ ( 𝐴  ∈  ℂ  →  ( ℑ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 8 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  ∈  ℂ )  →  ( i  ·  ( ℑ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 9 | 5 7 8 | sylancr | ⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  ( ℑ ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 10 |  | efadd | ⊢ ( ( ( ℜ ‘ 𝐴 )  ∈  ℂ  ∧  ( i  ·  ( ℑ ‘ 𝐴 ) )  ∈  ℂ )  →  ( exp ‘ ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  =  ( ( exp ‘ ( ℜ ‘ 𝐴 ) )  ·  ( exp ‘ ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) | 
						
							| 11 | 4 9 10 | syl2anc | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  =  ( ( exp ‘ ( ℜ ‘ 𝐴 ) )  ·  ( exp ‘ ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) | 
						
							| 12 |  | efival | ⊢ ( ( ℑ ‘ 𝐴 )  ∈  ℂ  →  ( exp ‘ ( i  ·  ( ℑ ‘ 𝐴 ) ) )  =  ( ( cos ‘ ( ℑ ‘ 𝐴 ) )  +  ( i  ·  ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) | 
						
							| 13 | 7 12 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( i  ·  ( ℑ ‘ 𝐴 ) ) )  =  ( ( cos ‘ ( ℑ ‘ 𝐴 ) )  +  ( i  ·  ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( exp ‘ ( ℜ ‘ 𝐴 ) )  ·  ( exp ‘ ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  =  ( ( exp ‘ ( ℜ ‘ 𝐴 ) )  ·  ( ( cos ‘ ( ℑ ‘ 𝐴 ) )  +  ( i  ·  ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) ) | 
						
							| 15 | 2 11 14 | 3eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ 𝐴 )  =  ( ( exp ‘ ( ℜ ‘ 𝐴 ) )  ·  ( ( cos ‘ ( ℑ ‘ 𝐴 ) )  +  ( i  ·  ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) ) |