Step |
Hyp |
Ref |
Expression |
1 |
|
replim |
⊢ ( 𝐴 ∈ ℂ → 𝐴 = ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) |
2 |
1
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
3 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
4 |
3
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℂ ) |
5 |
|
ax-icn |
⊢ i ∈ ℂ |
6 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
7 |
6
|
recnd |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℂ ) |
8 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ∈ ℂ ) → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
9 |
5 7 8
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) |
10 |
|
efadd |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℂ ∧ ( i · ( ℑ ‘ 𝐴 ) ) ∈ ℂ ) → ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
11 |
4 9 10
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( ( ℜ ‘ 𝐴 ) + ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) ) |
12 |
|
efival |
⊢ ( ( ℑ ‘ 𝐴 ) ∈ ℂ → ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( cos ‘ ( ℑ ‘ 𝐴 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) |
13 |
7 12
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) = ( ( cos ‘ ( ℑ ‘ 𝐴 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( exp ‘ ( i · ( ℑ ‘ 𝐴 ) ) ) ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( ( cos ‘ ( ℑ ‘ 𝐴 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) ) |
15 |
2 11 14
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( ( exp ‘ ( ℜ ‘ 𝐴 ) ) · ( ( cos ‘ ( ℑ ‘ 𝐴 ) ) + ( i · ( sin ‘ ( ℑ ‘ 𝐴 ) ) ) ) ) ) |