Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
2 |
|
mulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝐴 · 𝑁 ) = ( 𝑁 · 𝐴 ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 · 𝑁 ) = ( 𝑁 · 𝐴 ) ) |
4 |
3
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝐴 · 𝑁 ) ) = ( exp ‘ ( 𝑁 · 𝐴 ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( 𝐴 · 𝑗 ) = ( 𝐴 · 0 ) ) |
6 |
5
|
fveq2d |
⊢ ( 𝑗 = 0 → ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( exp ‘ ( 𝐴 · 0 ) ) ) |
7 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) = ( ( exp ‘ 𝐴 ) ↑ 0 ) ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝑗 = 0 → ( ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) ↔ ( exp ‘ ( 𝐴 · 0 ) ) = ( ( exp ‘ 𝐴 ) ↑ 0 ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐴 · 𝑗 ) = ( 𝐴 · 𝑘 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑗 = 𝑘 → ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( exp ‘ ( 𝐴 · 𝑘 ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑗 = 𝑘 → ( ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) ↔ ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐴 · 𝑗 ) = ( 𝐴 · ( 𝑘 + 1 ) ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( exp ‘ ( 𝐴 · ( 𝑘 + 1 ) ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) = ( ( exp ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) |
16 |
14 15
|
eqeq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) ↔ ( exp ‘ ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( exp ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑗 = - 𝑘 → ( 𝐴 · 𝑗 ) = ( 𝐴 · - 𝑘 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝑗 = - 𝑘 → ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( exp ‘ ( 𝐴 · - 𝑘 ) ) ) |
19 |
|
oveq2 |
⊢ ( 𝑗 = - 𝑘 → ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) = ( ( exp ‘ 𝐴 ) ↑ - 𝑘 ) ) |
20 |
18 19
|
eqeq12d |
⊢ ( 𝑗 = - 𝑘 → ( ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) ↔ ( exp ‘ ( 𝐴 · - 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ - 𝑘 ) ) ) |
21 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( 𝐴 · 𝑗 ) = ( 𝐴 · 𝑁 ) ) |
22 |
21
|
fveq2d |
⊢ ( 𝑗 = 𝑁 → ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( exp ‘ ( 𝐴 · 𝑁 ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) = ( ( exp ‘ 𝐴 ) ↑ 𝑁 ) ) |
24 |
22 23
|
eqeq12d |
⊢ ( 𝑗 = 𝑁 → ( ( exp ‘ ( 𝐴 · 𝑗 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑗 ) ↔ ( exp ‘ ( 𝐴 · 𝑁 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
25 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
26 |
|
mul01 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) |
27 |
26
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 · 0 ) ) = ( exp ‘ 0 ) ) |
28 |
|
efcl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) |
29 |
28
|
exp0d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ 𝐴 ) ↑ 0 ) = 1 ) |
30 |
25 27 29
|
3eqtr4a |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( 𝐴 · 0 ) ) = ( ( exp ‘ 𝐴 ) ↑ 0 ) ) |
31 |
|
oveq1 |
⊢ ( ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) → ( ( exp ‘ ( 𝐴 · 𝑘 ) ) · ( exp ‘ 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) · ( exp ‘ 𝐴 ) ) ) |
32 |
31
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) ∧ ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) → ( ( exp ‘ ( 𝐴 · 𝑘 ) ) · ( exp ‘ 𝐴 ) ) = ( ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) · ( exp ‘ 𝐴 ) ) ) |
33 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
34 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
35 |
|
adddi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 · ( 𝑘 + 1 ) ) = ( ( 𝐴 · 𝑘 ) + ( 𝐴 · 1 ) ) ) |
36 |
34 35
|
mp3an3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · ( 𝑘 + 1 ) ) = ( ( 𝐴 · 𝑘 ) + ( 𝐴 · 1 ) ) ) |
37 |
|
mulid1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 ) |
38 |
37
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · 1 ) = 𝐴 ) |
39 |
38
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝐴 · 𝑘 ) + ( 𝐴 · 1 ) ) = ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) |
40 |
36 39
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · ( 𝑘 + 1 ) ) = ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) |
41 |
33 40
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 · ( 𝑘 + 1 ) ) = ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) |
42 |
41
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( exp ‘ ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( exp ‘ ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) ) |
43 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · 𝑘 ) ∈ ℂ ) |
44 |
33 43
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 · 𝑘 ) ∈ ℂ ) |
45 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
46 |
|
efadd |
⊢ ( ( ( 𝐴 · 𝑘 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( exp ‘ ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) = ( ( exp ‘ ( 𝐴 · 𝑘 ) ) · ( exp ‘ 𝐴 ) ) ) |
47 |
44 45 46
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( exp ‘ ( ( 𝐴 · 𝑘 ) + 𝐴 ) ) = ( ( exp ‘ ( 𝐴 · 𝑘 ) ) · ( exp ‘ 𝐴 ) ) ) |
48 |
42 47
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( exp ‘ ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( exp ‘ ( 𝐴 · 𝑘 ) ) · ( exp ‘ 𝐴 ) ) ) |
49 |
48
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) ∧ ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) → ( exp ‘ ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( exp ‘ ( 𝐴 · 𝑘 ) ) · ( exp ‘ 𝐴 ) ) ) |
50 |
|
expp1 |
⊢ ( ( ( exp ‘ 𝐴 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( exp ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) · ( exp ‘ 𝐴 ) ) ) |
51 |
28 50
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( exp ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) · ( exp ‘ 𝐴 ) ) ) |
52 |
51
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) ∧ ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) → ( ( exp ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) · ( exp ‘ 𝐴 ) ) ) |
53 |
32 49 52
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) ∧ ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) → ( exp ‘ ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( exp ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) |
54 |
53
|
exp31 |
⊢ ( 𝐴 ∈ ℂ → ( 𝑘 ∈ ℕ0 → ( ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) → ( exp ‘ ( 𝐴 · ( 𝑘 + 1 ) ) ) = ( ( exp ‘ 𝐴 ) ↑ ( 𝑘 + 1 ) ) ) ) ) |
55 |
|
oveq2 |
⊢ ( ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) → ( 1 / ( exp ‘ ( 𝐴 · 𝑘 ) ) ) = ( 1 / ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
56 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
57 |
|
mulneg2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝐴 · - 𝑘 ) = - ( 𝐴 · 𝑘 ) ) |
58 |
56 57
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( 𝐴 · - 𝑘 ) = - ( 𝐴 · 𝑘 ) ) |
59 |
58
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( 𝐴 · - 𝑘 ) ) = ( exp ‘ - ( 𝐴 · 𝑘 ) ) ) |
60 |
56 43
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( 𝐴 · 𝑘 ) ∈ ℂ ) |
61 |
|
efneg |
⊢ ( ( 𝐴 · 𝑘 ) ∈ ℂ → ( exp ‘ - ( 𝐴 · 𝑘 ) ) = ( 1 / ( exp ‘ ( 𝐴 · 𝑘 ) ) ) ) |
62 |
60 61
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( exp ‘ - ( 𝐴 · 𝑘 ) ) = ( 1 / ( exp ‘ ( 𝐴 · 𝑘 ) ) ) ) |
63 |
59 62
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( exp ‘ ( 𝐴 · - 𝑘 ) ) = ( 1 / ( exp ‘ ( 𝐴 · 𝑘 ) ) ) ) |
64 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
65 |
|
expneg |
⊢ ( ( ( exp ‘ 𝐴 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( exp ‘ 𝐴 ) ↑ - 𝑘 ) = ( 1 / ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
66 |
28 64 65
|
syl2an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( exp ‘ 𝐴 ) ↑ - 𝑘 ) = ( 1 / ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
67 |
63 66
|
eqeq12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( exp ‘ ( 𝐴 · - 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ - 𝑘 ) ↔ ( 1 / ( exp ‘ ( 𝐴 · 𝑘 ) ) ) = ( 1 / ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) ) ) ) |
68 |
55 67
|
syl5ibr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) → ( exp ‘ ( 𝐴 · - 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ - 𝑘 ) ) ) |
69 |
68
|
ex |
⊢ ( 𝐴 ∈ ℂ → ( 𝑘 ∈ ℕ → ( ( exp ‘ ( 𝐴 · 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑘 ) → ( exp ‘ ( 𝐴 · - 𝑘 ) ) = ( ( exp ‘ 𝐴 ) ↑ - 𝑘 ) ) ) ) |
70 |
8 12 16 20 24 30 54 69
|
zindd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑁 ∈ ℤ → ( exp ‘ ( 𝐴 · 𝑁 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑁 ) ) ) |
71 |
70
|
imp |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝐴 · 𝑁 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑁 ) ) |
72 |
4 71
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ) → ( exp ‘ ( 𝑁 · 𝐴 ) ) = ( ( exp ‘ 𝐴 ) ↑ 𝑁 ) ) |