Step |
Hyp |
Ref |
Expression |
1 |
|
df-ef |
⊢ exp = ( 𝑥 ∈ ℂ ↦ Σ 𝑘 ∈ ℕ0 ( ( 𝑥 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
2 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
3 |
|
0zd |
⊢ ( 𝑥 ∈ ℂ → 0 ∈ ℤ ) |
4 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑥 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑥 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
5 |
4
|
eftval |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑥 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝑥 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑥 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝑥 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
7 |
|
eftcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑥 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
8 |
4
|
efcllem |
⊢ ( 𝑥 ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑥 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
9 |
2 3 6 7 8
|
isumcl |
⊢ ( 𝑥 ∈ ℂ → Σ 𝑘 ∈ ℕ0 ( ( 𝑥 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
10 |
1 9
|
fmpti |
⊢ exp : ℂ ⟶ ℂ |